
© 2000 - 2006, Rice Consulting Services, Inc.

UTC

Unit Test Process

Objectives

• Learn a complete process for unit testing
• Learn how to create unit test cases
• Learn how to perform unit testing
• Understand the levels of code coverage
• Learn how to design a structural test
• Understand the role of regression testing and how to

perform it
• Learn how to create and maintain test data

Synopsis

Learn a complete process for unit testing.

UTC - Unit Test Process

 UTC - 1

Unit Testing Process

Step 1 - Planning

Step 2 - Define Tests

Step 3 - Create Test DataStep 3 - Create Test Data

Step 4 - Perform TestsStep 4 - Perform Tests Step 5 - Check ResultsStep 5 - Check Results

Step 6 - Evaluate ResultsStep 6 - Evaluate Results

Unit Testing Process

Step 1 - Planning

Step 2 - Define Tests

Step 3 - Create Test DataStep 3 - Create Test Data

Step 4 - Perform TestsStep 4 - Perform Tests Step 5 - Check ResultsStep 5 - Check Results

Step 6 - Evaluate ResultsStep 6 - Evaluate Results

Unit Testing Process

The unit testing process has six major steps:

1. Planning
2. Define Tests
3. Create Test Data
4. Perform Test
5. Check Results
6. Evaluate Results

Th
is

 M
at

er
ia

l M
ay

 N
ot

 B
e

R
ep

ro
du

ce
d.

Each of these steps will be described in detail in this module.

UTC - Unit Test Process

 UTC - 2

Unit Testing Process Step 1 -
Planning

• Task 1 - Identify functions to be tested
– From specifications
– From end-user scenarios
– Basic functionality
– Edits and errors

Unit Testing Process Step 1 – Planning

Task 1 - Identify functions to be tested

The functions to be tested can be derived from:

• From specifications

Examples: program specs, requirements, business rules

• From end-user scenarios

Examples: business processes, use cases, business events

• Basic functionality

Examples: menus, buttons, navigation, calculations

• Edits and errors

Examples: data entry, file handling

UTC - Unit Test Process

 UTC - 3

• Task 2 - Identify logic
– 1) Identify each decision point (node).
– 2) Draw a structure chart
– 3) Build a decision chart
– 4) For each row of the decision

 chart, translate the decisions
 into a test case. Each row will
 represent a path through the logic.

Unit Testing Process Step 1 -
Planning

Task 2 - Identify Logic to be Tested

This will form the basis for structural testing. In many cases, only isolated sections of
code will be tested at this level, depending on the risk.

To design structural tests:

1. Identify each decision point (node).
2. Draw a structure chart
3. Build a decision chart
4. For each row of the decision chart, translate the decisions into a test case. Each row
represents a path through the logic.

UTC - Unit Test Process

 UTC - 4

Step 1 - Identify Decision Nodes

IF CUST-ON-FILE THEN
 IF CUST-CODE = “A” AND YEARS-ON-FILE > 3 THEN

SET DISCOUNT-RATE = .05
GO TO EXIT

 ELSE
 SET DISCOUNT-RATE = 0
 C PERFORM CUST-EDIT-ROUTINE THROUGH CUST-

EDIT-EXIT UNTIL END-OF-CUST.
 GO TO EXIT

D ELSE
 GO TO EXIT.

B
A

Step 1 - Identify Decision Nodes

IF CUST-ON-FILE THEN
 IF CUST-CODE = “A” AND YEARS-ON-FILE > 3 THEN

SET DISCOUNT-RATE = .05
GO TO EXIT

 ELSE
 SET DISCOUNT-RATE = 0
 C PERFORM CUST-EDIT-ROUTINE THROUGH CUST-

EDIT-EXIT UNTIL END-OF-CUST.
 GO TO EXIT

D ELSE
 GO TO EXIT.

B
A

Step 2 - Draw a Structure Chart

A
T

BTF
F

C
D T

F

Step 2 - Draw a Structure Chart

A
T

BTF
F

C
D T

F

UTC - Unit Test Process

 UTC - 5

Step 3 - Build a Decision Table

A B C D

1 F -- -- --

2 T T -- --

3 T F T --

4 T F F --

Step 3 - Build a Decision Table

A B C D

1 F -- -- --

2 T T -- --

3 T F T --

4 T F F --

Step 4 - Create Test Cases
Test case #1 - Customer not on file.

Test case #2 - Customer on file, code = “A”,
years on file >3.

Test case #3 - Customer on file, code not = “A”,
or years on file <= 3, end of file
not reached.

Test case #4 - Customer on file, code not = “A”,
or years on file <= 3, end of file
reached.

Step 4 - Create Test Cases
Test case #1 - Customer not on file.

Test case #2 - Customer on file, code = “A”,
years on file >3.

Test case #3 - Customer on file, code not = “A”,
or years on file <= 3, end of file
not reached.

Test case #4 - Customer on file, code not = “A”,
or years on file <= 3, end of file
reached.

Condition Expected Result Procedure
1. Customer not on file. No discount applied. Exit to end of

routine.
1. Enter customer that is not

on file and press F4.
2. Customer on file, customer code = “A”,

years on file > 3.
5% discount applied. Exit to end of
routine.

1. Enter customer that is on
file with code = “A” and
press F4.

3. Customer on file, code not = “A”, end of file
not reached.

No discount applied. Keep performing
edit routine until last record read.

1. Enter customer that is
on file with code not =
“A” and multiple
customer records to
update.

2. Press F4.
4. Customer on file, code not = “A”, end of file

reached.
No discount applied. Exit to end of
routine.

1. Enter customer that is on
file with code not = “A”
and one customer record
to update.

2. Press F4.

UTC - Unit Test Process

 UTC - 6

Structured Control Constructs:
Sequence

Structured Control Constructs:
Sequence

Structured Control Constructs

In drawing structure charts, it is helpful to understand the basic set of constructs that can
be combined to graph a module or section of code.

Sequence

The simplest of all structural constructs is the sequence, in which one logical node leads
to another. In this construct, there are no branches, conditions or loops.

Structured Control Constructs:
IF

Structured Control Constructs:
IF

IF

The IF construct is a simple IF…Else structure:

IF CUST-STATUS = “A” THEN
 SET CUST-DISC-RATE TO .05
ELSE
 SET CUST-DISC-RATE TO 0.

UTC - Unit Test Process

 UTC - 7

Structured Control Constructs:
While

Structured Control Constructs:
While

Structured Control Constructs

While

The While construct stays in a loop as long as a certain condition is true. Once the
condition is false, a branch is taken to exit the loop.

Example:

PERFORM CUST-DISC-RTE WHILE CUST-STATUS = “A”.

Structured Control Constructs:
Until

Structured Control Constructs:
Until

Until

The Until construct, like the While construct, stays in a loop as long as a certain condition
is true. Unlike the While construct, the Until construct branches out of the loop whenever
the condition is reached, not necessarily at the initiation of the loop.

Example:

PERFORM CUST-DISC-RTE UNTIL CUST-STATUS = “A”.

UTC - Unit Test Process

 UTC - 8

Structured Control Constructs:
Case

Structured Control Constructs:
Case

Structured Control Constructs

Case

The Case construct branches to any number of nodes, based on a certain condition. Good
coding practice terminates the control paths at a common ending point, such as an exit
routine.

Example:

CASE

F2: CALC-CUST-RATE
F3: END-RTE
F4: SEARCH

ENDCASE;

UTC - Unit Test Process

 UTC - 9

• Task 3 - Identify interfaces
– Transfers of control from and to other units,
– Transfer of data from and to other units,
– Passing of parameters from and to other

units,
– Interfaces with appropriate files,
– Interfaces between the unit and the

operating environment.

Unit Testing Process Step 1 -
Planning

Task 3 - Identify Interfaces

Unit testing also can extend outside of the unit to:

• Transfers of control from and to other units,
• Transfer of data from and to other units,
• Passing of parameters from and to other units,
• Interfaces with appropriate files,
• Interfaces between the unit and the operating environment.

Unit Testing Process Step 1 –
Planning (4)

• Task 4 - Define test cases
– Test #
– Test condition
– Expected result
– Test procedure

Task 4 – Define Test Cases

A test case can be defined as a combination of:

• Test condition – a triggering event or action

• Expected result – pre-defined observable outcome

• Test procedure – how to set up and perform the test case

UTC - Unit Test Process

 UTC - 10

Defining Test Conditions

• From production
– Addresses real-world conditions
– Sources

• Existing production files or tables being used as is,
• Existing production files or tables for which there will

be minor changes,
• Production files or tables that contain approximately

the same fields/data elements,
• Existing manual files/files from other systems.

Defining Test Conditions

There are many sources of test conditions, including the production environment. This
source of test conditions addresses some of the real-world cases that a developer or tester
may not think of. Some common sources of production test cases include:

• Existing production files or tables being used as is,
• Existing production files or tables for which there will be minor changes,
• Production files or tables that contain approximately the same fields/data elements,
• Existing manual files/files from other systems.

However, as we will see later in this module, the production environment should not be
the only source of test conditions for a variety of reasons.

UTC - Unit Test Process

 UTC - 14

Step 2 - Define Tests

• Task 1 - Design test cases
– Boundary-value analysis
– Ex:

-9 0
1

2
5

9
10

11 99

2 position integer, between 1 and 10, inclusive

valid = 1,2,5,9,10 invalid = -9,0,11,99

Step 2 – Define Tests

 Boundary Value Analysis

The main idea in this step is to design tests that complete the test conditions identified in
the previous step. In addition to the test condition, test cases include pre-defined results
and procedures for performing the test.

One technique for designing tests in boundary/value analysis. When a range of values is
validated, write test cases that explore the inside and outside "edge" or boundaries of the
range.

This type of test case design is performed where thresholds are involved. It is important
to realize that the only category of defect this kind of test finds is that of incorrect
operators, such as >= being used instead of >. For example a specification may state that
customers with a code > 10 are to get a special discount. However, the rule might get
coded as customers with a code > or = to 10 get the discount. These tests are designed to
be performed around the boundaries of a business rule, therefore other test cases must be
designed using other techniques.

The concept of boundary value analysis is to test just below, right on, and just above the
condition. In the above example test cases would be customer codes of 0, 1, 2, 5, 9, 10
and 11. The degree of precision determines the values to be used.

A major downside with this technique is that it gives an illusion of rigorous testing, but
doesn’t deliver. You also test more conditions than necessary because you are testing
below, on and above each condition. If you knew what the code looked like, you could
eliminate some of the cases.

Warning: If you try to test each boundary value case in conjunction with all the other
boundary values, the complexity gets astronomical in a hurry.

UTC - Unit Test Process

 UTC - 22

SAMPLE TEST CASE DESCRIPTIONS

 # Test Condition Expected Result Test Procedure

1.

2.

3.

4.

5.

6.

7.

8.

9.

At home page, click on “products”
button.

At home page, click on “products” text
link

At products page, perform a search by
clicking on the pull-down menu each of
the following product categories:
a) book
b) CD
c) Video
d) DVD

At the book category product page,
enter a book title that is on file in the
search field and click “Go” button.

At the book category product page,
enter a book title that is not on file in
the search field and click “Go” button.

At the book category product page,
enter a partial book title that is on file
in the search field and click “Go”
button.

At the book category product page,
enter a book author that is on file in the
search field and click “Go” button.

At the book category product page,
enter a book author that is not on file in
the search field and click “Go” button.

At the book category product page,
enter a partial book author that is on
file in the search field and click “Go”
button.

Products page should be displayed
correctly.

Products page should be displayed
correctly.

For each type of product selected,
the correct product category page
should be displayed correctly.

All matching titles should be
displayed correctly.

No matching books displayed.

All matching titles should be
displayed correctly.

All books by matching authors
should be displayed correctly.

No books by matching authors
displayed.

All books by matching authors
should be displayed correctly.

1) Access home page
2) Click on “products” button

1) Access home page
2) Click on “products” text link

From the Products page:
1) Click on the down arrow on the

search pull-down menu
2) Select product category

From the Book Product page:
1) Type a book title that is known to

be on file
2) Click on the “Go” button.

From the Book Product page:
1) Type a book title that is known

not to be on file
2) Click on the “Go” button.

From the Book Product page:
1) Type a partial book title that is

known to be on file
2) Click on the “Go” button.

From the Book Product page:
1) Type an author that is known to

be on file
2) Click on the “Go” button.

From the Book Product page:
1) Type an author that is known not

to be on file
2) Click on the “Go” button.

From the Book Product page:
1) Type a partial author that is

known to be on file
2) Click on the “Go” button.

UTC - Unit Test Process

 UTC - 23

Th

is
 M

at
er

ia
l M

ay
 N

ot
 B

e
R

ep
ro

du
ce

d.

Test Coverage

StatementBranchConditionMulti-
condition

Path

Structural Test Coverage Levels

Test coverage is a way to measure the completeness of a test structurally and can be
measured in a number of ways, as shown above.

Statement Coverage

• Measures the percentage of statements
executed during testing.

• This routine could be tested with
statement coverage only:

INITIALIZE-ROUTINE.
SET ERROR-CODE TO 0.

SET ACCOUNT-STATUS TO “N”.
COMPUTE FIRST-VALUE =

DAYS-IN-MONTH * MONTHLY-RATE.
INITITIALIZE-ROUTINE-EXIT.

EXIT.

Statement Coverage

• Measures the percentage of statements
executed during testing.

• This routine could be tested with
statement coverage only:

INITIALIZE-ROUTINE.
SET ERROR-CODE TO 0.

SET ACCOUNT-STATUS TO “N”.
COMPUTE FIRST-VALUE =

DAYS-IN-MONTH * MONTHLY-RATE.
INITITIALIZE-ROUTINE-EXIT.

EXIT.

• Statement coverage is the lowest level of coverage and indicates that a line of code

has been executed at least once.

UTC - Unit Test Process

 UTC - 24

Branch Coverage

• Measures the percentage of branches
executed during testing.

• This routine could be tested with
statement and branch coverage only:

DISCOUNT-ROUTINE.

IF CUSTOMER-CODE = “A”

SET CUST-DISC-RATE = .05
ELSE

SET CUST-DISC-RATE = 0.

A

B C

T FA
B

C

Branch Coverage

• Measures the percentage of branches
executed during testing.

• This routine could be tested with
statement and branch coverage only:

DISCOUNT-ROUTINE.

IF CUSTOMER-CODE = “A”

SET CUST-DISC-RATE = .05
ELSE

SET CUST-DISC-RATE = 0.

A

B C

T FA
B

C

Branch Coverage

• Branch coverage indicates that both “True” and “False” branches have been covered
in code logic.

Condition Coverage
• Measures the percentage of conditions

executed during testing.
• This routine could be tested with

statement and condition coverage only:

DISCOUNT-ROUTINE.
PERFORM RATE-ID-RTE THRU RATE-ID-EXIT
UNTIL RATE-ID-CODE = CUST-RATE-CODE.

DISCOUNT-ROUTINE-EXIT.
EXIT.

A

B

A

B

T
F

Condition Coverage
• Measures the percentage of conditions

executed during testing.
• This routine could be tested with

statement and condition coverage only:

DISCOUNT-ROUTINE.
PERFORM RATE-ID-RTE THRU RATE-ID-EXIT
UNTIL RATE-ID-CODE = CUST-RATE-CODE.

DISCOUNT-ROUTINE-EXIT.
EXIT.

A

B

A

B

T
F

Condition Coverage

• Condition coverage indicates that all non-binary decisions have been covered, such as
“Do/While” loops, case constructs, etc.

UTC - Unit Test Process

 UTC - 28

Test Scripts

• Primary benefit is for interactive online
software

• Allows the test to be performed independently
• Allows the test to be repeated
• Documents the test

Test Scripts

• Primary benefit is for interactive online
software

• Allows the test to be performed independently
• Allows the test to be repeated
• Documents the test

Test Scripts

Test scripts are a very helpful tool for testing interactive online software, such as CICS
transactions. Test scripts add a great degree of rigor to your testing effort, but they do
require a significant effort to write manually. The choice of whether or not to use test
scripts depends on amount of test planning time and resources available.

If the test is to be performed by someone other that the designer of the test, scripts are
almost a necessity to convey exactly what should be done in performing the test. In
addition, test scripts allow the test to be repeated. This is needed if a defect is found and the
fix needs to be re-tested.

Another major benefit of test scripts is that they document the test. If there is ever any
doubt after the test about which functions were tested, test scripts are a good reference.

The sample test script shown on the following page shows both good and bad practice.

Good practice

You will notice that specific data values are not indicated on the test script. The reason is
that embedding specific data in a test script requires a separate test script for each instance
on test data. So, if there are 200 test data items, 200 test scripts will be required. Each item
of test documentation will likely require maintenance. For example, if the process to be
tested changes, or if the data changes, then every piece of test documentation must be
changed. Therefore, keeping specific data out of the test scripts and test cases will reduce
the test documentation maintenance burden.

Bad practice

You will notice that the expected result accommodates two situations – one that accounts
for a new employee and one that accounts for an existing one. This introduces complexity
to the script – plus a need to handle the next action in a clean way. The better practice
would be to break the script into two scripts – one for the new employee and one for the
existing employee.

Module UTC – Unit Test Process

Sample Test Script

System: Payroll System Performed By: _________________________________ Date: ________________

Step # Module ID Action Expected Result Observed Result Pass/

Fail
Defect #

1.

2.

3.

PY001

PY001

PY005B

Type employee name and ID in employee
entry screen.

Enter a pay rate effective in two pay
periods.

Run batch payroll job for the next pay
period.

If employee is on file, basic
information is displayed correctly.

If employee is not on file, a message
is displayed “Employee not on file.
Do you wish to add?”

Type “Y” and press ENTER key. The
employee is added and message is
displayed “Employee successfully
added.”

Rate accepted.

Payroll calculated correctly. The pay
rate entered in step 2 is not applied.

 UTC - 29

UTC - Unit Test Process

Test Script Modularity and
Reusability

Add a
customer

Add a
customer

Add a
customer

Add a
customer

Change a
customer

Change a
customer

Delete a
customer

Delete a
customer

Test #1

Test #2

Test #3

Script 1 Script 2 Script 3

Script 1

Script 1Script 1

Script 3 Script 2

Script Modularity

By keeping scripts modular, you can combine them to construct many different test
scenarios. This also reduces the overall number of scripts to maintain. In addition, if you
are currently writing manual test scripts, modular scripts are much easier to convert to an
automated tool format.

Script modularity requires that you start and stop scripts at a common point, such as a
empty or blank entry screen.

EX: CUSTOMER ENTRY SCRIPTS

SCRIPT #1 - Enter a customer
SCRIPT #2 - Change a customer
SCRIPT #3 - Delete (Cancel) a customer

One test might be to enter, change, and then cancel a customer. Another test might be to
enter a customer and then enter the same customer again. Both of these tests could be
accomplished with just three scripts. There are many more possible combinations.

 UTC - 30

	Unit Testing Process
	Unit Testing Process Step 1 – Planning
	Task 1 - Identify functions to be tested
	From specifications
	From end-user scenarios
	Task 2 - Identify Logic to be Tested

	Structured Control Constructs
	Sequence
	IF

	Structured Control Constructs
	While
	Until

	Structured Control Constructs
	Case
	Task 3 - Identify Interfaces

	Task 4 – Define Test Cases
	Defining Test Conditions
	Defining Test Conditions
	Step 2 – Define Tests
	Decision Tables
	Requirements-based Test Case Design
	Error Guessing
	Regression Test Cases
	Structural Test Coverage Levels

	Branch Coverage
	Condition Coverage
	Multi-Condition Coverage
	Path Coverage
	Good practice
	Bad practice

	Script Modularity
	Batch Test Sets
	How to Create and Maintain Test Data
	Three basic strategies
	Production data
	Created test data
	A combination of production and created test data

	The challenge
	To relate and integrate test data for all systems to be test
	To get the most testing value from the minimal amount of tes
	How to Create and Maintain Test Data

	Step 1 - For each system to be tested, identify all affected
	Step 2 - Define a region in the test environment with all id
	Step 3 - Based on business cases to be tested, design test c
	Step 4 - If necessary, populate the test environment with in
	How to Create and Maintain Test Data (Cont'd.)
	Step 5 - Backup the initially created test data.
	Step 6 - If necessary, supplement the created test data with
	Step 7 - Backup the initial test data.
	How to Create and Maintain Test Data

	Step 8 - Perform test cycle 1: online input
	Step 9 - Backup the test files
	Step 10 - Perform test cycle 1: batch processing
	Step 11 - Backup the test files
	Continue this process throughout testing. If new test data i

	Step 4 - Execute Tests
	After the test has been planned, it is time to execute the p
	Task 1 - Setup test
	Task 2 – Execute
	Task 3 - Log test

	Test Harnesses and Stubs
	Test Harness or Driver
	Test Stubs
	How Much Regression Testing is Enough?
	Tips for Performing Regression Testing
	Control the scope of testing.
	Build a reusable test bed of data.
	Use automated tools.
	Base the amount of regression testing on risk.
	Build a repeatable and defined process for regression testin

	When is Regression Testing Performed?
	Step 5 – Check Results
	Step 5 – Check Results
	Step 6 – Evaluate Results
	Step 6 – Evaluate Results
	Task 3 - Recommend

