
11/29/18	

1	

BASIC CONCEPTS OF
PERFORMANCE
TESTING

© 2018, Rice Consulting Services, Inc.

2

1.1 PRINCIPLES OF
PERFORMANCE
TESTING

11/29/18	

2	

3

LEARNING OBJECTIVE
•  PTFL-1.1.1 (K2) Understand the principles of

performance (15 mins)

4

PRINCIPLES OF
PERFORMANCE TESTING
•  Performance is an essential part of the

user experience.
•  Performance testing plays a critical role

in establishing acceptable quality levels
for the end user.
•  Often closely integrated with other

disciplines such as usability
engineering, performance engineering
and DevOps.

1.1 Principles of Performance Testing

11/29/18	

3	

5

PRINCIPLES OF
PERFORMANCE TESTING (2)
•  Evaluation of other quality characteristics such as

functionality, usability under conditions of load, such as
during a performance test, may reveal load-specific issues
which impact those characteristics.
•  Not just limited to the web-based domain where the end user is the

focus.
•  It is also relevant to different application domains with a variety of

system architectures, such as classic client-server, distributed and
embedded.

6

PERFORMANCE QUALITY
CHARACTERISTICS
•  Technically, performance is categorized in the ISO 25010

[ISO25000] Product Quality Model as a non-functional
quality characteristic with these three sub characteristics:
•  Time Behavior
•  Resource Utilization
•  Capacity

•  Performance testing usually concentrates on one or more
of these sub-characteristics.

•  All three of the above quality sub-characteristics will
impact the ability of the system under test (SUT) to scale.

11/29/18	

4	

7

PERFORMANCE QUALITY
CHARACTERISTICS AND
RISK
•  Proper focus and prioritization depends on

risk assessment and the needs of the
various stakeholders.

•  Test results analysis may identify other
areas of risk that need to be addressed.

8

TIME BEHAVIOR
•  Generally the evaluation of time behavior is

the most common testing goal.
•  This examines the ability of a component or

system to respond to user or system inputs within
a specified time and under specified conditions.

•  Measurements of time behavior may vary from the
“end-to-end” time taken by the system to
responding to user input, to the number of CPU
cycles required by a code module to execute a
particular task.

11/29/18	

5	

9

RESOURCE
UTILIZATION
•  If the availability of system resources

is identified as a risk, the utilization
of those resources (e.g., the
allocation of limited RAM) may be
investigated by conducting specific
performance tests.

10

CAPACITY
•  If the capacity of the system (e.g.,

numbers of users or volumes of
data) is identified as a risk,
performance tests may be
conducted to evaluate the
suitability of the system
architecture.

11/29/18	

6	

11

EXPERIMENTATION
•  Since performance testing must

consider these different quality sub-
characteristics, it often takes the
form of experimentation, which
enables measurement and analysis
of specific system parameters to
take place.
•  These may be conducted iteratively

in support of system analysis, design
and implementation to enable
architectural decisions to be made
and to help shape stakeholder
expectations.

12

GENERAL TESTING PRINCIPLES
FOR PERFORMANCE TESTING
•  Tests must be aligned to the defined

expectations of different stakeholder
groups
•  In particular users, system designers

and operations staff.
•  The tests must be reproducible

•  Statistically identical results must be
obtained by repeating the tests on an
unchanged system.

11/29/18	

7	

13

GENERAL TESTING PRINCIPLES
FOR PERFORMANCE TESTING (2)
•  The tests must yield results that are both

understandable and can be readily
compared to stakeholder expectations.

•  The tests can be conducted, where
resources allow, either on complete or
partial systems that are representative of the
production system.

•  The tests must be practically affordable and
executable within the timeframe set by the
project.

14

EXAMPLE
•  A city water utility embarked on a

project to modernize its work order
system and utility billing system.

•  The project included new software,
new hardware, and a new database.

•  No one on the project thought about
performance testing until a new
consultant suggested it.

11/29/18	

8	

15

EXAMPLE (2)
•  As a result of the performance tests it was learned that:

•  The nightly billing system ran for 96 hours, instead of the 2
hours needed by the old system

•  The online application could only accommodate four users
concurrently.

•  There were 40 people in the department.
•  The system was never implemented because the

performance problems could never be resolved.

16

EXAMPLE (3)
•  In this real-life example:

•  The principles of performance testing were
not understood or followed.

•  Stakeholders expectations were not defined
or managed.

•  Vendor management intentionally withheld
knowledge of the potential performance
problems.

•  The city sued the vendor and recouped all
the fees (1.8 million dollars) paid to the
vendor.

•  It took five more years before a new system
was eventually implemented.

11/29/18	

9	

17

1.2 TYPES OF
PERFORMANCE
TESTING

18

LEARNING OBJECTIVE
•  PTFL-1.2.1 (K2) Understand the different types of

performance testing (15 mins)

11/29/18	

10	

19

TYPES OF
PERFORMANCE TESTING
•  Different types of performance testing can be defined.

•  Each of these may be applicable to a given project,
depending on the goals of the test.

•  Performance Testing

•  An umbrella term including any kind of testing focused on
performance (responsiveness) of the system under different
volumes of load.

•  Load Testing

•  Focuses on the ability of a system to handle increasing
levels of anticipated realistic loads resulting from transaction
requests generated by controlled numbers of concurrent
users or processes.

1.2 Types of Performance Testing

20

TYPES OF
PERFORMANCE TESTING
•  Stress Testing

•  Focuses on the ability of a system or component to handle
peak loads that are at or beyond the limits of its anticipated
or specified workloads.

•  Also used to evaluate a system’s ability to handle reduced
availability of resources such as accessible computing
capacity, available bandwidth, and memory.

11/29/18	

11	

21

TYPES OF
PERFORMANCE TESTING
•  Scalability Testing

•  Focuses on the ability of a system to meet
future efficiency requirements which may be
beyond those currently required.

•  The objective is to determine the system’s
ability to grow (e.g., with more users, larger
amounts of data stored) without exceeding the
currently specified performance requirements
or failing.

•  Once the limits of scalability are known,
threshold values can be set and monitored in
production to provide a warning of impending
problems.

•  The production environment may also be
adjusted with appropriate amounts of hardware.

22

TYPES OF
PERFORMANCE TESTING
•  Spike Testing

•  Tests the ability of a system to recover from
sudden bursts of peak loads and return
afterward to a steady state.

•  Endurance Testing
•  Tests the stability of the system over a time

frame specific to the system’s operational
context.

•  Verifies there are no resource capacity
problems that may eventually degrade
performance and/or cause failures

•  e.g., memory leaks, database connections,
thread pools

11/29/18	

12	

23

TYPES OF
PERFORMANCE TESTING
•  Concurrency Testing

•  Tests the impact of situations where specific actions occur
simultaneously

•  For example, when large numbers of users log in at the same time.
•  Concurrency issues are notoriously difficult to find and reproduce,

particularly when the problem occurs in an uncontrolled
environment such as production.

•  Capacity Testing
•  Determines how many users and/or transactions a given system

will support and still meet the stated performance goals.

24

EXAMPLE
•  One of the most notable examples of system failure was

the launch of the Affordable Healthcare Act website in
October of 2013.

•  “Problems with the website were apparent immediately.
High website demand (250,000 users [5 times more than
expected]) caused the website to go down within 2 hours
of launch.”

•  “A total of 6 users completed and submitted their
applications and selected a health insurance plan on the
first day.”
•  https://rctom.hbs.org/submission/the-failed-launch-of-www-

healthcare-gov/

11/29/18	

13	

25

26

EXAMPLE (2)
•  In this example, there were many contributing causes

beside system performance.
•  https://oig.hhs.gov/oei/reports/oei-06-14-00350.pdf

•  However, the proper system and performance testing
could have provided proof in advance that the website
was not ready for launch.
•  Even if such testing had been performed, the attitude was

that the site was going to be launched regardless of
readiness.

11/29/18	

14	

27

EXAMPLE (3)
•  In the healthcare.org example, the following types of

performance testing would have been needed:
•  Load testing to simulate at least 250,000 users.

•  “Currently we are able to reach 1,100 users before response
time gets too high,” a bulletin from HHS stated the day before
launch.

•  Stress testing to know how many users could be
accommodated.

•  In this case, the number was 1,100.

28

EXAMPLE (4)
•  Scalability testing to see if the website could handle

increasing user loads.
•  Spike testing to see if the site could handle the load on

day 1.
•  Endurance testing to see if the site could stay up and

running for several days, at least.
•  Concurrency testing to see how the system would

process many people applying for healthcare policies at
the same time.

•  Capacity testing to see how many applications could be
completed daily.
•  In this case, the number was 6!

11/29/18	

15	

29

1.3 TESTING
ACTIVITIES IN
PERFORMANCE
TESTING

30

LEARNING OBJECTIVE
•  PTFL-1.3.1 (K1) Recall activities in performance testing (10 mins)

11/29/18	

16	

31

TESTING ACTIVITIES IN
PERFORMANCE TESTING
•  Test types used in performance

testing include static activities in
performance engineering (planning
and design) and dynamic testing.
•  Static Testing

•  Testing a work product without code
being executed.

•  ISTQB Glossary

32

STATIC TESTING IN
PERFORMANCE TESTING
•  In the case of performance testing, static activities are

often more important than static activities for functional
testing.
•  This is because so many critical performance defects are

introduced in the architecture and design of the system.
•  These defects can be introduced by misunderstandings or a

lack of knowledge by the designers and architects.
•  These defects can also be introduced because the

requirements did not adequately capture the response time,
throughput, or resource utilization targets, the expected load
and usage of the system, or the constraints.

11/29/18	

17	

33

STATIC ACTIVITIES
FOR PERFORMANCE
•  Reviews of requirements
•  Reviews of database schemas, entity-

relationship diagrams, metadata, stored
procedures and queries

•  Reviews of the system and network
architecture

•  Reviews of critical segments of the system
code

•  Modeling of system resource requirements
and/or behavior using spreadsheets or
capacity planning tools

•  Analysis of other potential performance
degradation factors

34

BENEFITS OF PERFORMANCE
ENGINEERING
•  Good performance engineering can help project teams

avoid the late discovery of critical performance defects
during higher levels of testing, such as system integration
testing or user acceptance testing.

•  Performance defects found late in the testing can be
extremely costly and may even lead to the cancellation of
entire projects.

•  As the system is built, dynamic performance testing
should start as soon as possible.

11/29/18	

18	

35

DYNAMIC TESTING
•  Testing that involves the execution of the software of a

component or system.
•  ISTQB Glossary

36

OPPORTUNITIES FOR
DYNAMIC PERFORMANCE
TESTING
•  During unit testing, including using profiling information to

determine potential bottlenecks and dynamic analysis to
evaluate resource utilization
•  Component integration testing - across key use cases and

workflows, especially when feature integration or backbone
integration methods are used

•  System testing - end-to-end behaviors under various load
conditions

•  System integration testing - especially for data flows and
workflows across key inter-system interfaces

•  Acceptance testing - to build user, customer, and operator
confidence in the proper performance of the system and to fine
tune the system under real world conditions (but not to find
performance defects)

11/29/18	

19	

37

THE ROLE OF TEST
ENVIRONMENTS
•  In higher levels of testing such as system testing and

system integration testing, the use of realistic
environments, data, and loads are critical for accurate
results

38

THE ROLE OF AN SDLC
•  In Agile and other iterative-incremental lifecycles, teams

should incorporate static and dynamic performance
testing into early iterations rather than waiting for final
iterations to address performance risks.

11/29/18	

20	

39

THE ROLE OF
SIMULATORS
•  If custom or new hardware is part of

the system, early dynamic
performance tests can be
performed using simulators.
•  However, it is good practice to start

testing on the actual hardware as soon
as possible, as simulators often do not
adequately capture resource constraints
and performance-related behaviors.

40

1.4 THE CONCEPT OF
LOAD GENERATION

11/29/18	

21	

41

LEARNING OBJECTIVE
•  PTFL-1.4.1 (K2) Understand the concept of load

generation (10 mins)

42

THE CONCEPT OF
LOAD GENERATION
•  In order to carry out the various types of performance

tests, representative system loads must be modeled,
generated and submitted to the system under test.

•  The efficient and reliable generation of a specified load is
a key success factor when conducting performance tests.
•  There are different options for load generation.

1.4 The Concept of Load Generation

11/29/18	

22	

43

DIFFERENCES IN TEST
LOADS
•  Loads are comparable to the data inputs used

for functional test cases, but differ in the
following principal ways:
•  A performance test load must represent many user inputs, not just

one
•  A performance test load may require dedicated hardware and tools

for generation
•  Generation of a performance test load is dependent on a degree of

functional stability in the system under test

44

LOAD GENERATION VIA
THE USER INTERFACE
•  This may be an adequate approach if

only a small numbers of users are to
be represented and if the required
numbers of software clients are
available from which to enter
required inputs.

•  This approach may also be used in
conjunction with functional test
execution tools, but may rapidly
become impractical as the numbers
of users to be simulated increases.

11/29/18	

23	

45

THE IMPACT OF UI
STABILITY
•  The stability of the user interface (UI) also represents a

critical dependency which can impact the repeatability of
performance tests and may significantly affect the
maintenance costs.

•  Testing through the UI may be the most representative
approach for end-to-end tests.

46

LOAD GENERATION VIA
THE USER INTERFACE

VU Agent

VU Agent

VU Agent

VU Agent

11/29/18	

24	

47

LOAD GENERATION
USING CROWDS
•  This “crowdsourcing” approach depends on the

availability of a large number of testers who will represent
real users.

•  In crowd testing, the testers are organized such that the
desired load can be generated.

•  This may be a suitable method for testing web-based
applications and may enable very large numbers of users
to be utilized.

•  The load generation will not be as reproducible and
precise as other options and is organizationally more
complex.

48

CROWDSOURCED
PERFORMANCE TESTING

Cloud-based
Performance

Test
Tool or Service

Thousands of people with
multiple points of origin
geographically dispersed

Target
Environment

Direct
Tester Access

11/29/18	

25	

49

GENERATION VIA THE
APPLICATION PROGRAMMING
INTERFACE (API)
•  This approach is similar to using the UI for data entry, but

uses the application’s API instead of the UI to simulate
user interaction with the system under test.

•  The approach is therefore less sensitive to changes (e.g.,
delays) in the UI and allows the transactions to be
processed in the same way as they would if entered
directly by a user via the UI.

•  Dedicated scripts may be created which repeatedly call
specific API routines and enable more users to be
simulated compared to using UI inputs.

50

GENERATION VIA THE APPLICATION
PROGRAMMING INTERFACE (API)

VU Agent

VU Agent

VU Agent

VU Agent

API

11/29/18	

26	

51

GENERATION USING CAPTURED
COMMUNICATION PROTOCOLS
•  This approach involves capturing

user interaction with the system
under test at the communications
protocol level and then replaying
these scripts to simulate potentially
very large numbers of users in a
repeatable and reliable manner.

52

GENERATION USING CAPTURED
COMMUNICATION PROTOCOLS -
EXAMPLE

VU Agent
http

VU Agent https

VU Agent

mqtt

VU Agent

TCP/IP

11/29/18	

27	

53

EXAMPLE
•  A large e-commerce web site is planning the performance

testing of a new architecture that will have a new user
interface and will use new APIs to access a variety of
services in the cloud.

•  Some performance tests will directly access the UI to
simulate actual user activity.
•  These will be performed across an https:// protocol.
•  The activity will be based on user scenarios such as

searching, ordering, etc.

54

EXAMPLE (2)
•  Other performance tests will directly access APIs to

simulate high transaction load to the services.
•  These will be performed across an https:// protocol to

access REST services.
•  Examples include currency conversion, inventory queries

with vendors, and shipping rates with carriers.

11/29/18	

28	

55

1.5 COMMON
FAILURES IN
PERFORMANCE
TESTING AND THEIR
CAUSES

56

LEARNING OBJECTIVE
•  PTFL-1.5.1 (K2) Give examples of common

failures of performance testing and their causes
(10 mins)

11/29/18	

29	

57

COMMON FAILURES IN
PERFORMANCE TESTING AND
THEIR CAUSES
•  The following are some examples of

common failures (including system
crashes), along with typical causes, as
shown on the following slides.

58

SLOW RESPONSE UNDER
ALL LOAD LEVELS
•  In some cases, response is unacceptable regardless of

load.
•  This may be caused by underlying performance issues, including,

but not limited to, bad database design or implementation, network
latency, and other background loads.

•  These problems can be detected during functional and
usability testing, not just performance testing, so test
analysts should know to look for them and report them.

11/29/18	

30	

59

SLOW RESPONSE UNDER
MODERATE-TO-HEAVY
LOAD LEVELS
•  In some cases, response degrades unacceptably with

moderate-to-heavy load, even when such loads are
entirely within normal, expected, allowed ranges.

•  Underlying defects include saturation of one or more
resources and varying background loads.

60

DEGRADED RESPONSE
OVER TIME
•  In some cases, response degrades

gradually or severely over time.
•  Underlying defects include

memory leaks, disk fragmentation,
increasing network load over time,
and database growth.

11/29/18	

31	

61

INADEQUATE OR GRACELESS ERROR
HANDLING UNDER HEAVY LOAD
•  In some cases, response time is

acceptable but error handling degrades at
high and beyond-limit load levels.

•  Underlying defects include insufficient
resource pools, undersized queues and
stacks, and too rapid time-out settings.

62

FAILURE EXAMPLES
•  A web-based application that provides information about a

company’s services does not respond to user requests
within seven seconds.
•  The user goes to another company that provides similar services.

•  A system crashes or is unable to respond to user inputs
when subjected to a sudden large number of user
requests (e.g., ticket sales for a major sporting event).
•  The capacity of the system to handle this number of users is

inadequate.

11/29/18	

32	

63

FAILURE EXAMPLES (2)

•  System response is significantly degraded when users
submit requests for large amounts of data (e.g., a large
and important report is posted on a web site for
download).
•  The capacity of the system to handle the generated data volumes

is insufficient.
•  Batch processing is unable to complete before online

processing is needed.
•  The execution time of the batch processes is insufficient for the

time period allowed.

64

FAILURE EXAMPLES (3)
•  A real-time system runs out of RAM when parallel

processes generate large demands for dynamic memory
which cannot be released in time.
•  The RAM is not dimensioned adequately, or requests for RAM are

not adequately prioritized.
•  A real-time system component A which supplies inputs to

real-time system component B is unable to calculate
updates at the required rate.
•  The overall system fails to respond in time and may fail.
•  Code modules in component A must be evaluated and modified

(“performance profiling”) to ensure that the required update rates
can be achieved.

11/29/18	

33	

65

SUMMARY
•  High performance is one of the most important

quality attributes of a system or web site.
•  Correctness can be overshadowed by poor

performance.
•  Performance testing involves more than just

running a tool.
•  There are a variety of sub-types under

performance testing.
•  Static testing has an important role in

performance testing.
•  Tools are needed to achieve sustained load

generation that can be reproduced.
•  Performance failures can occur in a variety of

ways.

