1. For the following:

IF you buy a cheap-day return ticket
catch a train after 9.30am
ELSE
catch any train
ENDIF
Read the newspaper
Enjoy the train journey
a) What is the minimum number of test cases that are required to achieve 100% Statement Coverage?
b) What is the minimum number of test cases that are required to achieve 100\% Decision Coverage?
c) How much decision coverage have I achieved if I buy a "cheap-day-return" ticket only?
2. For the following pseudo code:

Read A
Read B
IF B = A
Print "they are the same"
ELSE
Print "they are different"
ENDIF
Print "End of processing"
Generate a minimum set of tests (values of A and B) that achieve 100\% statement and 100% decision coverage
3. For the following:

IF the vending machine is not working
call repair centre to fix
ELSE
Insert money
WHILE there is not enough money
Display message "insert money"
Insert more money
ENDWHILE
Select a drink
Wait for drink to be dispensed
Collect any change

ENDIF

Go back to work

| a) Calculate the minimum number of tests required to |
| :--- | :--- |
| achieve 100% statement coverage |\quad| b) Calculate the minimum number of tests required to |
| :--- |
| achieve 100% decision coverage |

4. Given the following pseudo code:

Read P
Read Q
IF P+Q > 100
Print "Large"
ELSE
IF P+Q > 50
Print "Medium"
ENDIF
ENDIF
Do something else

| a)What is the minimum number of test cases that are
 required to achieve 100% Statement Coverage: | |
| :--- | :--- | :--- |
| b)What is the minimum number of test cases that are
 required to achieve 100% Decision Coverage | |
| c)Provide values for P and Q that will achieve 100\%
 Statement Coverage | |
| d)Will these same values achieve 100% Decision
 Coverage | |

5. For the following pseudo code:

Read (Gross Pay)
Read (Allowances)
Taxable Pay = Gross Pay - Allowances
IF Taxable Pay > 30,000
Tax Due $=$ Taxable Pay * 40%

ELSE

IF Taxable Pay > 15,000
Tax Due $=$ Taxable Pay * 23\%
ELSE
Tax Due $=$ Taxable Pay * 10\%
ENDIF
ENDIF
Store Tax Due
a) What is the minimum number of test cases that are required to achieve 100\% Statement Coverage:
b) What values are required for Gross Pay and Allowances to achieve 100\% Decision Coverage?

1. For the following:

IF you buy a cheap-day return ticket
catch a train after 9.30am
ELSE
catch any train
ENDIF
Read the newspaper
Enjoy the train journey

a)	What is the minimum number of test cases that are required to achieve 100% Statement Coverage?	$\mathbf{2}$
b)	What is the minimum number of test cases that are required to achieve 100\% Decision Coverage?	$\mathbf{2}$
c)How much decision coverage have I achieved if I buy a "cheap-day-return" ticket only?	$\mathbf{5 0 \%}$ (1 out of 2)	

2. For the following pseudo code:

Read A
Read B
IF B = A
Print "they are the same"
ELSE
Print "they are different"
ENDIF
Print "End of processing"
Generate a minimum set of tests (values of A and B) that achieve 100% statement and 100% decision coverage
Test Case 1: $\mathrm{A}=5, \mathrm{~B}=5$ - expected output "they are the same"
Test Case 2: A = 5, B = 4 - expected output "they are

3. For the following:

IF the vending machine is not working call repair centre to fix

ELSE

Insert money
WHILE there is not enough money Display message "insert money" Insert more money
ENDWHILE
Select a drink
Wait for drink to be dispensed
Collect any change

ENDIF

Go back to work

a)Calculate the minimum number of tests required to achieve 100% statement coverage	$\mathbf{3}$
b)Calculate the minimum number of tests required to achieve 100% decision coverage	$\mathbf{3}$

4. Given the following pseudo code:

Read P
Read Q
IF P+Q > 100
Print "Large"
ELSE
IF P+Q > 50
Print "Medium"
ENDIF
ENDIF
Do something else

a) What is the minimum number of test cases that are need to achieve 100\% Statement Coverage:
b) What is the minimum number of test cases that 3 are required to achieve 100\% Decision Coverage
c) Provide values for P and Q that will achieve 100% Statement Coverage

Test Case 1: $\mathbf{P = 5 0 , Q = 6 0}$
Test Case 2: $P=50, Q=50$
d) Will these same values achieve 100% Decision Coverage

No, a further test is needed,
e.g. $\mathbf{P}=20, Q=20$
5. For the following pseudo code:

Read (Gross Pay)

Read (Allowances)
Taxable Pay = Gross Pay - Allowances
IF Taxable Pay > 30,000
Tax Due = Taxable Pay * 40\%
ELSE
IF Taxable Pay > 15,000
Tax Due = Taxable Pay *23\%

ELSE

Tax Due = Taxable Pay * 10\%

ENDIF

ENDIF
Store Tax Due

a) What is the minimum number of test cases that are required to achieve 100\% Statement Coverage:
b) What values are required for Gross Pay and Allowances to achieve 100\% Decision Coverage?

Test Case 1: Gross Pay $=\mathbf{5 0 , 0 0 0}$, Allowances $=\mathbf{1 5 , 0 0 0}$ (Taxable Pay $=\mathbf{3 5 , 0 0 0}$)
Test Case 2: Gross Pay = 50,000, Allowances =22,000, (Taxable Pay =28.000)
Test Case 3: Gross Pay = 50,000, Allowances $=\mathbf{4 0 , 0 0 0}$, (Taxable Pay $=\mathbf{1 0 , 0 0 0})$

