
© Grove Consultants, 2013ATM130815

1-1

4 Defect
Management

5 Improving the
Test Process

6 Test Tools
and Automation

7 People Skills

Testing Process

1.1

ISTQB Advanced Level
Test Manager

1 Testing Process 2 Test Management 3 Reviews

Contents

Introduction

Test Planning, Monitoring and Control

Test Analysis

Test Design

Test Implementation

Test Execution

Evaluating Exit Criteria and Reporting

Test Closure Activities
1.2

© Grove Consultants, 2013ATM130815

1-2

The fundamental test process (Foundation Level)

1.3

Activities may
be sequential or
concurrent, i.e.
may overlap

Planning
& Control

Closure

Analysis
& Design

Implementation
& Execution

Evaluate Exit
Criteria & Report

The fundamental test process (Advanced Level)

1.4

Planning
& Control

Closure

Analysis

Evaluate Exit
Criteria & Report

Design

Implementation

Execution

Test Manager’s
prime concern

Activities may
be sequential or
concurrent, i.e.
may overlap

Test Manager’s
prime concern

© Grove Consultants, 2013ATM130815

1-3

Contents

Introduction

Test Planning, Monitoring and Control

Test Analysis

Test Design

Test Implementation

Test Execution

Evaluating Exit Criteria and Reporting

Test Closure Activities
1.5

Test planning purpose

identify activities and resources to
verify the testing mission

meet test objectives

in practical terms:
implement the test strategy

i.e. make an operational plan

communicate the planned testing to the stakeholders

test mission
high level/abstract statements describing overall purpose of testing

e.g. ‘find defects’, ‘keep customers happy’

test objectives
measureable activities

e.g. ‘find 98% of highest severity defects’
1.6

© Grove Consultants, 2013ATM130815

1-4

1.7

Test planning implements the test strategy

e.g. risk based test strategy could influence the test plan by

identifying product risks and how testing can help

highlighting additional static testing (reviews) of poor quality
documentation needed as a test basis

relative priorities of the test activities

the test plan prescribes the scope,
approach, resources and schedule of
testing activities

it identifies scope (what should and should
not be tested)

it establishes how the strategy applies to
the software under test

project
or

level test
plan

Test planning – an overview

1.8

UAT

System Test

Integration test

PerformancePlanning for each test
level
• starts at initiation

for that level
• continues through

project
• ends at completion

of closure activities
for that level

Planning identifies
methods for
• gathering and

tracking metrics

Metrics used to
• guide the project
• determine

adherence to plan
• assess whether

objectives are met

Should begin as early
as possible
• tailored to the

organisation

Level test plans
• based on strategy
• consistent with

master test plan

© Grove Consultants, 2013ATM130815

1-5

Test planning – additional considerations

need to understand relationships between test
basis, test conditions and tests

often many-to-many relationships

specification of what features are within scope
and explicit identification of what is out of scope

helps avoid ‘misunderstandings’

identification of test environment requirements
work with project architects

verify resource availability

understand costs / timescales

identify all external dependencies
people / organisations providing resources / services

agree any Service Level Agreements (SLA)
1.9

Test monitoring

purpose
provide timely and accurate information

to support informed decisions

applicable throughout the project
starts with initial test schedule

includes all testing activities

metrics to monitor may include
risk information

defect information

tests designed, built, executed, passed / failed

test coverage

effort

1.10

0
5

10
15
20
25
30
35

1 2 3 4 5 6 7 8 9

© Grove Consultants, 2013ATM130815

1-6

Relating test progress to the test basis

for effective monitoring
relate status of test work products and
activities to the test basis and test objectives

in a manner that is understandable and
relevant to the stakeholders

for example:

1.11

Risk 1

Risk 2

Risk 3

Test
condition

Test
condition

Test
conditionTest

condition
Test

condition
Test

condition

Test
case

not run

passed
failed

not run

passed
failed

not run

passed
failed

not run

passed
failed

Test
case

Test
case

Test
case

Risk 1: mitigated

Risk 2: outstanding

Risk 3: outstanding
not run

passed

failed

passed

Reporting to stakeholders

test reports must keep the
target audience in mind

sometimes the detailed
measures and targets that
stakeholders want monitored
will not relate directly to
system functionality or
specification

particularly where there is
little or no formal
documentation

e.g. stakeholder may require
coverage against operational
business cycle

involve business
stakeholders early to help
define suitable measures
and targets

provide better control

drive and influence testing

e.g. structure test design
and execution to support
accurate monitoring
against stakeholder
measures

1.12

© Grove Consultants, 2013ATM130815

1-7

Test control

purpose
to guide testing to fulfil mission and objectives

an on-going activity
comparing actual progress with the plan

identify deviations
behind / ahead of schedule

fewer / more defects

early / late availability

determine appropriate corrective actions
earlier the better

less severe controlling actions

e.g. reallocate resources, re-prioritise

1.13

Contents

Introduction

Test Planning, Monitoring and Control

Test Analysis

Test Design

Test Implementation

Test Execution

Evaluating Exit Criteria and Reporting

Test Closure Activities
1.14

© Grove Consultants, 2013ATM130815

1-8

Test analysis versus test design

1.15

Test analysis defines WHAT is to be tested

Test design defines HOW it is to be tested

If the ‘what’ is
wrong, much
of the ‘how’

effort may be
wasted!

Test analysis

1.16

Analyse
test basis

Prioritise Prioritise

Identify test
conditions

understand:
• get to know

identify what is:
• untestable
• wrong
• ambiguous
• extra
• missing

assess risk
• prioritise

using
• test basis
• test

objectives
• product risks
• stakeholders

test conditions
are measures
and targets for
success

traceability: back to test basis and objectives and
forward to test designs, test cases, etc.

© Grove Consultants, 2013ATM130815

1-9

Test basis

information available describing the software
typically one or more specifications

e.g. requirement spec., use cases, system spec., functional spec.,
business process spec.

but could also be

contracts, letters, emails, user feedback / requests

sometimes, no documentation exists at all
must rely on own knowledge / understanding

and that of others – ask questions!

level of testing may decide test basis
user acceptance testing requirements spec.

component testing low-level design spec.

should detail quality characteristics as well as behaviour
1.17

1.18

Choosing test design techniques

Test specification

Different

design

techniques

Filter

risks to be mitigated

knowledge of the
software under test

source documents
available

benefits to be delivered

test oracle available

© Grove Consultants, 2013ATM130815

1-10

Factors affecting the level of detail

1.19

Level of testing

Detail and quality
of test basis

System / software
complexity

Project and
product risk

Relationship between test
basis, what is to be tested,
and how it is to be tested

Software development lifecycle

Stakeholder availability

Maturity of test process
and organisation

Skills and knowledge
of Test Analysts

Detail of other
work products

Test management tool

Factors affecting
level of detail

of test conditions

Advantages

better and more detailed
monitoring and control

defect prevention

better relates test work
products to stakeholders

helps influence and direct
activities

enables more efficient
coverage

clearer horizontal
traceability

Disadvantages

time consuming

maintenance becomes
more difficult

level of formality needs
more control

1.20

Detailed test conditions: pros and cons

© Grove Consultants, 2013ATM130815

1-11

Detailed test conditions: when most appropriate

are specially effective when
lightweight test design
documentation methods (e.g.
checklists) are in use

reduces need for further
test documentation (i.e.
test cases)

formal requirements or
development work products
are absent

build the knowledge into
test conditions

project is large-scale, complex
or high risk

being more thorough
1.21

Less detailed test conditions

less detailed test conditions
are appropriate when the
test basis can be related
easily and directly to test
design work products

component level testing

less complex projects with
simple hierarchical
relationships

acceptance testing

1.22

© Grove Consultants, 2013ATM130815

1-12

Contents

Introduction

Test Planning, Monitoring and Control

Test Analysis

Test Design

Test Implementation

Test Execution

Evaluating Exit Criteria and Reporting

Test Closure Activities
1.23

Test Design

1.24

Design &
specify test

cases

From
test conditions

to
test cases

(and possibly)
test procedures

Develop test
procedures

starts when test conditions
are identified and sufficient
information available

can be high-level (logical)
or low-level (concrete)

© Grove Consultants, 2013ATM130815

1-13

not run

passed
failed

not run

passed
failed

not run

passed
failed

not run

passed
failed

Relating test cases to test basis

1.25

Req. 1

Req. 2

Test
condition

Test
condition

Test
conditionTest

condition
Test

condition
Test

condition

Req.1: fulfilled
100% test coverage
75% condition coverage

Req.2: outstanding
100% test completion
50% test success

failed

passed

passed

passed

Test
case

Test
case

Test
case

Test
case

Not covered by a test

Requirements
Specification

degree of traceability depends on the
approach to test monitoring and control

Separate versus integrated activity

for higher levels of testing
e.g. system, acceptance
testing

test design more likely a
separate activity following test
analysis

for lower levels of testing
e.g. component, component
integration testing

it is more likely that test
analysis and design will be an
integrated activity

1.26

© Grove Consultants, 2013ATM130815

1-14

concrete (low-level) test cases

content
all specific information and
procedures required

to execute and verify tests

useful when
requirements well defined

testing staff less experienced

external verification required

good points
reproducibility

but
maintenance effort significant

limits tester ingenuity & coverage

logical (high-level) test cases

content
guidelines for what’s to be tested

testers vary data/procedures

useful when
requirements not well defined

testing staff experienced

with testing and the product

formal documents not required

good points
may provide better coverage

can be defined earlier

but
loss of reproducibility

1.27

Concrete and logical test cases

Contents

Introduction

Test Planning, Monitoring and Control

Test Analysis

Test Design

Test Implementation

Test Execution

Evaluating Exit Criteria and Reporting

Test Closure Activities
1.28

© Grove Consultants, 2013ATM130815

1-15

Test implementation

tests are organised and
prioritized by Test Analysts

implementation of concrete
test cases, test procedures
and test data

IEEE 829 compliance:

inputs and expected results
in test case specifications

test steps in procedures

creation of stored test data
files and databases

final checks
everything ready for test
execution?

environments, people,
reviewed test cases,
code, etc.

explicit entry and exit criteria

develop description of test
environment and data

1.29

Level of detail required

1.30

influenced by the detail of other test work products
e.g., test conditions and test cases

tests may provide detailed steps necessary to execute a test
e.g. where tests are to be archived for long-term re-use in regression
testing

to ensure reliable, consistent execution regardless of the tester
executing the test.

if regulatory rules apply, tests should provide evidence of
compliance to applicable standards

© Grove Consultants, 2013ATM130815

1-16

Test execution schedule

tasks for the Test Manager during
test implementation:

check for constraints

including risks and priorities

check for tests that require

running in a particular order

running on specific equipment

check and note dependencies on

test environment

test data

1.31

Advantages

test documentation ready
for execution

provides worked examples of
expected behaviours

verification of concrete
tests by domain experts
may be easier

further early defect detection

preparation all done
e.g. test data

Disadvantages

dramatic code changes in
Agile between iterations

may make earlier work on
implementation obsolete

maintenance of test
documentation

particularly with iterative /
incremental lifecycles and
poorly managed sequential

extra re-work if changes
occur

1.32

Early test implementation: pros and cons

© Grove Consultants, 2013ATM130815

1-17

Contents

Introduction

Test Planning, Monitoring and Control

Test Analysis

Test Design

Test Implementation

Test Execution

Evaluating Exit Criteria and Reporting

Test Closure Activities
1.33

Prerequisites for test execution

test execution starts when:
test object is delivered, and

entry criteria are satisfied

tests should have been designed / defined

tools should be in place
test management

defect tracking

test execution (if applicable)

processes in place
test results tracking

metrics tracking

data to be tracked should be understood by all team members

standards for test logging and defect reporting available
1.34

© Grove Consultants, 2013ATM130815

1-18

Scripted and unscripted testing

when following a test
strategy that is at least in
part reactive

reserve time for test sessions
using experience-based and
defect-based techniques.

automated tests will follow
their defined instructions
without deviation

1.35

tests should be executed as
documented

that’s why they’re documented!

consider allowing time to:
cover additional interesting test
scenarios and behaviours

for failures detected during
unscripted testing

describe the variations from
the written test case that are
necessary to reproduce the
failure.

Test Manager responsibilities during test execution

monitor progress
compare with the test plan

achieved by

using traceability between
– test objectives

– test basis

– test conditions

– test cases / procedures

– test results

initiate control actions
to achieve the mission and
objectives

1.36

© Grove Consultants, 2013ATM130815

1-19

Contents

Introduction

Test Planning, Monitoring and Control

Test Analysis

Test Design

Test Implementation

Test Execution

Evaluating Exit Criteria and Reporting

Test Closure Activities
1.37

Evaluating exit criteria

1.38

assess exit criteria for each level as defined in the test plan

generate more tests if required or change the exit criteria

example information to collect throughout testing
number of test planned versus executed

number of tests passed versus failed

total defects raised, by severity and outstanding

number of changes (change requests) raised

planned expenditure versus actual expenditure

planned elapsed time versus actual elapsed time

risks outstanding

percentage of test time lost due to blocking events

total test time planned against effective test time carried out

© Grove Consultants, 2013ATM130815

1-20

Reporting

produce test progress
reports for stakeholders

document progress

raise any exceptions

must be meaningful to
recipient

use of dashboards
encouraged

Test Manager should ensure
that members of the test
team are providing the
information required in an
accurate and timely manner
so as to facilitate effective
evaluation and reporting

1.39

Contents

Introduction

Test Planning, Monitoring and Control

Test Analysis

Test Design

Test Implementation

Test Execution

Evaluating Exit Criteria and Reporting

Test Closure Activities
1.40

© Grove Consultants, 2013ATM130815

1-21

Test closure

test closure activities fall into four main groups
checking completion

ensuring that all test work is indeed concluded
(consolidation of test activities at the end
of testing phase)

delivery

delivering valuable work products to those needing them
– e.g. deferred defects to those using and supporting the system

– tests and test environments to those maintaining the system

retrospectives

performing or participating in retrospective meetings
(lessons learned – reinforce the good, mitigate the bad)

archiving

results, logs, reports, and other documents and work
products in the configuration management system 1.41

Lessons learned

1.42

User representation

Estimates

Planning

Analysis of defects

Potential Process Improvements?

• sufficient cross
section involved
in quality risk
analysis?

• could defects
have been
detected earlier
by involving
different users?

• were they
accurate?

• was testing
inefficient?

• was the original
estimate flawed?

• trends?
• results of cause /

effect analysis?
• was timing and

quantity of
change requests
an issue?

• where all
planned tests
performed?

• were there new
technology,
staffing changes,
or skills issues?

• where there
unanticipated
variances?

Lessons learned:
areas to be
considered

Session 1 Testing Process

© Grove Consultants, 2013 ATM130721 Page 1-1

Session 1

Testing Process

1.1 Introduction ... 1-2
1.2 Test Planning, Monitoring and Control ... 1-3

1.2.1 Test Planning .. 1-4
1.2.2 Test Monitoring and Control ... 1-7

1.3 Test Analysis .. 1-9
1.4 Test Design ... 1-13
1.5 Test Implementation ... 1-14
1.6 Test Execution .. 1-16
1.7 Evaluating Exit Criteria and Reporting .. 1-17
1.8 Test Closure Activities .. 1-17

Terms
exit criteria, test case, test closure, test condition, test control, test design, test execution, test
implementation, test level, test log, test planning, test procedure, test script, test summary
report.

From the ISTQB Glossary

exit criteria: The set of generic and specific conditions, agreed upon with the stakeholders for
permitting a process to be officially completed. The purpose of exit criteria is to prevent a task from
being considered completed when there are still outstanding parts of the task which have not been
finished. Exit criteria are used to report against and to plan when to stop testing. [After Gilb and Graham]

test case: A set of input values, execution preconditions, expected results and execution post-
conditions, developed for a particular objective or test condition, such as to exercise a particular
program path or to verify compliance with a specific requirement. [After IEEE 610]

test closure: During the test closure phase of a test process data is collected from completed activities
to consolidate experience, testware, facts and numbers. The test closure phase consists of finalizing
and archiving the testware and evaluating the test process, including preparation of a test evaluation
report. See also test process.

test condition: An item or event of a component or system that could be verified by one or more test
cases, e.g. a function, transaction, feature, quality attribute, or structural element.

test control: A test management task that deals with developing and applying a set of corrective
actions to get a test project on track when monitoring shows a deviation from what was planned. See
also test management.

test design: (1) See test design specification. (2) The process of transforming general testing objectives
into tangible test conditions and test cases.

test execution: The process of running a test on the component or system under test, producing actual
result(s).

test implementation: The process of developing and prioritizing test procedures, creating test data
and, optionally, preparing test harnesses and writing automated test scripts.

Testing Process Session 1

Page 1-2 ATM130721 © Grove Consultants, 2013

test level: A group of test activities that are organized and managed together. A test level is linked to
the responsibilities in a project. Examples of test levels are component test, integration test, system test
and acceptance test. [After TMap]

test log: A chronological record of relevant details about the execution of tests. [IEEE 829]

test planning: The activity of establishing or updating a test plan.

test procedure specification: A document specifying a sequence of actions for the execution of a test.
Also known as test script or manual test script. [After IEEE 829] See also test specification.

test procedure: See test procedure specification.

test script: Commonly used to refer to a test procedure specification, especially an automated one.

test summary report: A document summarizing testing activities and results. It also contains an
evaluation of the corresponding test items against exit criteria. [After IEEE 829]

1.1 Introduction

Test and development processes

Testing is an important part of software development and, like development, testing is not a
single process or activity but a set of processes and activities. These development and testing
processes are mixed together throughout the software lifecycle. Without the development
processes, testing processes mean nothing, as the testing processes ‘test’ what the
development processes produce. Without the development processes there would be nothing
for testing to test! Testing processes support the development processes. Without the testing
processes the development processes will not succeed

The testing processes are interconnected with the development processes and with project
support processes. Some examples of development and supporting processes are given
here.

Example development
processes

Example project supporting processes

• Requirements engineering
• Design
• Coding
• Software maintenance

• Quality assurance
• Project management
• Configuration management
• Change management
• Technical writing (production of technical

documentation)
• Technical support (environment and tool

support)
• Requirements management

Testing is a part of the quality assurance process and therefore testing is also a supporting
process. Testware artefacts, the materials created by testing such as test plans, test
specifications etc. can and should themselves be subject to quality assurance and testing.
This makes testing recursive - meaning that testing interfaces with itself.

Quality assurance and project management are supporting processes that typically are
carried out throughout the software lifecycle (we’ll be discussing software lifecycles next).
Similarly, configuration and change management are also important tasks that support
software testing throughout the lifecycle. Without configuration management, concurrent
versions of the software and testware artefacts may be lost or mismanaged. Without proper
change management, the impact of changes on the system may not be evaluated properly.

The software lifecycle

The software lifecycle is the period of time that begins when a software product is conceived
and ends when the software is no longer available for use. Typically there are several phases
within the software lifecycle but, at a high level, we can see the development phase in which

Session 1 Testing Process

© Grove Consultants, 2013 ATM130721 Page 1-3

the product is designed, built and tested, and the operation and maintenance phase in which
the product is used and maintained.

Software development lifecycle

The way in which development and testing processes are structured form the development
phase of the overall software lifecycle, and this is called the software development lifecycle.
There are many different ways of structuring the development and testing processes but there
are some common structures and these are described by software development lifecycle
models that each fall into one of the following three categories.

• Sequential e.g. Waterfall model, V-model and W-model
• Iterative e.g. Rapid Application Development (RAD) and Spiral model
• Incremental e.g. Evolutionary and Agile methods

The fundamental test process

The ISTQB® Foundation Level syllabus describes a fundamental test process that includes
the following activities:

• Planning and control
• Analysis and design
• Implementation and execution
• Evaluating exit criteria and reporting
• Test closure activities

The Foundation Level syllabus states that although logically sequential, the activities in the
process may overlap or take place concurrently. Tailoring these main activities within the
context of the system and the project is usually required.

For the Advanced Level syllabi some of these activities are considered separately in order to
provide additional refinement and optimization of the processes, to better fit with the software
development lifecycle, and to facilitate effective test monitoring and control. The activities are
now considered as follows:

• Planning, monitoring and control
• Analysis
• Design
• Implementation
• Execution
• Evaluating exit criteria and reporting
• Test closure activities

These activities can be implemented sequentially or some can be implemented in parallel,
e.g., design could be performed in parallel with implementation (e.g., exploratory testing).

The activities of test planning, monitoring and control, evaluating exit criteria and reporting
and test closure are all of particular concern to the Test Manager. Although Test Analysts and
Technical Test Analysts focus on the activities of analysis, design, implementation and
execution, they should also be involved in the other fundamental test process activities,
supporting the Test Manager with their skills and knowledge and providing accurate and
timely information.

It is important for Test Managers to consider the different software development lifecycles as
well as the type of system being tested, as these factors can influence the approach to
testing.

1.2 Test Planning, Monitoring and Control

Learning Objective

TM-1.2.1 K4 Analyse the test needs for a system in order to plan test activities and work
products that will achieve the test objectives.

Testing Process Session 1

Page 1-4 ATM130721 © Grove Consultants, 2013

From the ISTQB Glossary

level test plan: A test plan that typically addresses one test level. See also test plan.

test case: A set of input values, execution preconditions, expected results and execution post-
conditions, developed for a particular objective or test condition, such as to exercise a particular
program path or to verify compliance with a specific requirement. [After IEEE 610]

test condition: An item or event of a component or system that could be verified by one or more test
cases, e.g. a function, transaction, feature, quality attribute, or structural element.

test design: (1) See test design specification. (2) The process of transforming general testing objectives
into tangible test conditions and test cases.

test design specification: A document specifying the test conditions (coverage items) for a test item,
the detailed test approach and identifying the associated high level test cases. [After IEEE 829] See also
test specification.

test level: A group of test activities that are organized and managed together. A test level is linked to
the responsibilities in a project. Examples of test levels are component test, integration test, system test
and acceptance test. [After TMap]

test management: The planning, estimating, monitoring and control of test activities, typically carried
out by a test manager.

test mission: The purpose of testing for an organization, often documented as part of the test policy.
See also test policy.

test objective: A reason or purpose for designing and executing a test.

test plan: A document describing the scope, approach, resources and schedule of intended test
activities. It identifies amongst others test items, the features to be tested, the testing tasks, who will do
each task, degree of tester independence, the test environment, the test design techniques and entry
and exit criteria to be used, and the rationale for their choice, and any risks requiring contingency
planning. It is a record of the test planning process.

test planning: The activity of establishing or updating a test plan.

test policy: A high level document describing the principles, approach and major objectives of the
organization regarding testing.

test process: The fundamental test process comprises test planning and control, test analysis and
design, test implementation and execution, evaluating exit criteria and reporting, and test closure
activities.

test specification: A document that consists of a test design specification, test case specification
and/or test procedure specification.

test strategy: A high-level description of the test levels to be performed and the testing within those
levels for an organization or programme (one or more projects).

This section focuses on the processes of planning, monitoring and controlling testing. As was
discussed at the Foundation Level, these activities are test management roles.

1.2.1 Test Planning

Purpose

The purpose of test planning is to identify the activities and resources (both human and
material) required to:

• verify the mission of the testing (as given in the test policy/test strategy)
• meet the test objectives (goals/purpose)

Note that the glossary definition of the ‘test mission’ states that this is often documented
within the test policy, while the syllabus states that it is documented in the test strategy. Since
the names and content of these documents vary across different organisations, we need to
appreciate that variations will exist. Where test policy and test strategy documents do not
exist, the test mission may be stated in the master test plan.

Mission statements are a high level or abstract statement concerning the overall purpose of
testing (such as ‘find defects, ‘keep customers happy’, ‘manage risks’). The test objectives

Session 1 Testing Process

© Grove Consultants, 2013 ATM130721 Page 1-5

are more specific targets such as ‘find 98% of the defects with the highest impact on
customers or the business’, ‘achieve customer satisfaction scores greater than 75%’, and ‘run
tests to mitigate the highest level of product quality risks’.

Test objectives are measurable activities that need to happen in order to meet the mission
statement. Therefore test objectives are more likely to be quantified in some way (making it
possible to measure progress toward them and to confirm their achievement). There can be
different test objectives at different levels from organisation-wide objectives, project-specific
objectives and test level-specific objectives.

The syllabus states that the test objectives are ‘defined in the test strategy’ but also implies
that test objectives for a particular level of testing may be defined in the associated level test
plan (or master test plan). The glossary definition of ‘test policy’ includes ‘major objectives’ in
its content.

Test planning is the means by which we transform the test strategy into an operational plan.
For example, a risk-based test strategy will focus test effort on the highest risk levels and this
may be implemented by planning a large proportion of the test effort, and possibly use of
more thorough testing techniques, on the highest risk level areas of the software. The
resources required will include staff, time, facilities and tools. We will need to put in place an
organisational structure if this doesn’t already exist. If it does, we may need to adapt it to
better meet the demands of the new test project.

The work product produced by test planning is, of course, the test plan. The test plan
document is the primarily means of communicating the planned testing work to the
stakeholders.

When

Generally, test planning should begin as soon as possible at the start of the project. Where
the project is large, the initial test planning should result in a master test plan that outlines the
testing activities across the entire project. Subsequently more detailed test planning may be
performed for each level of testing, resulting in a number of level test plans.

The benefits of early test planning include:

• early visibility of potential problems
• possibility of providing input to the development plan
• time to do planning well
• time to involve stakeholders

Test planning is not a single activity that is only done once; it is a continuous activity that goes
on throughout the project. This applies to both the master test plan and the level test plans.
After the initial planning has been done and the other testing activities are progressing,
information about what is happening may justify changes to the master and/or level test plans
to keep them in step with actual progress. Such changes are inevitable because we do not
know (and cannot know) in detail what may happen, how long some activities will take, what
problems will be found, etc. Consequently the test plans are based on many assumptions,
several of which are likely to be proven inaccurate if not completely wrong!

Approach

In addition, the test planning stage is where the approach to testing is clearly defined by the
Test Manager, including

• which test levels will be employed
• the goals and objectives of each level, and
• what test techniques will be used at each level of testing.

For example, in risk-based testing of certain avionics systems, a risk assessment would be
used to determine what level of code coverage is required and thereby which testing
techniques should be used.

Testing Process Session 1

Page 1-6 ATM130721 © Grove Consultants, 2013

Level test plans

The detailed level test planning specific to each test level should begin at the start of the test
process for that level and carry on throughout the project until completion of the closure
activities for that level. Detailed planning for a test level can start as soon as the
documentation on which the testing is to be based has reached a reasonable degree of
completeness (i.e. it need not be in its final version, but what does exist should be fairly
stable). This documentation may be draft but should have sufficient information in it to enable
the planning to progress. The level test planning should be based on the test strategy and be
consistent with the master test plan and the overall project plan.

The structure of the test plans should be tailored to the organisation. Many organisations
have templates that help to ensure consistency and completeness. The content of test plans
is discussed in more detail in Section 2.4 “Test Documentation and Other Work Products”.

Gathering and tracking metrics

As stated earlier, a primary purpose of test planning is to identify the activities and resources
required to meet the test mission and objectives. However, test planning also includes
identifying the methods for gathering and tracking the metrics that will be used to guide the
project, determine adherence to the plan and assess achievement of the objectives. By
determining useful metrics during the planning stages, tools can be selected, training can be
scheduled and documentation guidelines can be established. This will help to ensure that
metric collection and analysis is as efficient as it needs to be and that everyone involved will
know how to contribute to effective and consistent use of metrics.

Determining the testing tasks

The strategy (or strategies) selected for the testing project help to determine the tasks that
should occur during planning and later stages. For example, when using the risk-based
testing strategy (see Chapter 2), risk analysis is used to guide the test planning process
regarding the mitigating activities required to reduce the identified product risks and to help
with contingency planning. If a likely risk of serious potential defects related to security is
identified, a significant amount of effort should be spent developing and executing security
tests. Likewise, if it is identified that serious defects are usually found in the design
specification, the test planning process could schedule additional static testing (reviews) of
the design specification.

Priorities

Risk information may also be used to determine the priorities of the various testing activities.
For example

• where system performance poses a high risk, performance testing may be conducted
as soon as integrated code is available.

• if a reactive strategy is to be employed, planning for the creation of test charters and
tools for dynamic testing approaches such as exploratory testing may be needed;
again, test planning should target these at the areas of highest risk.

Test basis to test cases

Complex relationships may exist between the test basis (e.g., specific requirements or risks),
test conditions and the tests that cover them. Many-to-many relationships often exist between
these work products. These need to be understood to enable effective implementation of test
planning, monitoring and control. Tool decisions may also depend on the understanding of the
relationships between the work products.

Work product relationships

Relationships may also exist between work products produced by the development team and
the testing team. For example, the traceability matrix may need to track the relationships
between the detailed design specification elements from the system designers, the business
requirements from the business analysts, and the test work products defined by the testing

Session 1 Testing Process

© Grove Consultants, 2013 ATM130721 Page 1-7

team. Depending on the levels of formality and documentation appropriate to the project,
each feature that is within scope may be associated with a corresponding test design
specification.

If low-level test cases are to be designed and used, there may be a requirement defined in
the planning stages that the detailed design documents from the development team must be
approved before test case creation can start.

When following an Agile lifecycle, informal transfer-of-information sessions may be used to
convey information between team members. If this reveals something that should be tested
but isn't documented, that thing should be added to the traceability matrix.

Scope

The test plan may list the specific features of the software that are within its scope (based on
risk analysis, if appropriate), as well as explicitly identifying features that are not within its
scope. Doing this can help avoid misunderstandings between testing and the other
stakeholders. It is all too easy for someone to assume that a particular feature will be tested
and may know a good reason why it should be. It can happen that the people involved with
test planning are not made aware of this reason and so decide not to test the feature (or not
to test it as thoroughly as they should). Test planning provides the opportunity for all
stakeholders to check that the planned testing matches their expectations.

Test environment

There may be a requirement at this stage for the Test Manager to work with the project
architects to define the initial test environment. This must include all necessary hardware,
software (including operating systems and other elements such as browsers, database
systems), test tools including monitoring tools, office space and equipment.

Early specification of the test environment is important to verify availability of the resources
required, to ensure that the people who will configure the environment are committed to do
so, and to understand costs, delivery timescales, and the work required to make the test
environment ready for test execution.

External dependencies

All external dependencies and associated Service Level Agreements (SLAs) should be
identified and, if required, initial contact should be made with those people or organisations
that provide resources, products or services. Examples of dependencies are resource
requests to outside groups, dependencies on other projects (if working within a program),
external vendors or development partners, the deployment team, and database
administrators.

1.2.2 Test Monitoring and Control

From the ISTQB Glossary

test control: A test management task that deals with developing and applying a set of corrective
actions to get a test project on track when monitoring shows a deviation from what was planned. See
also test management.

test implementation: The process of developing and prioritizing test procedures, creating test data
and, optionally, preparing test harnesses and writing automated test scripts.

Test monitoring

Test monitoring is concerned with all the testing activities that start to occur as soon as the
initial test planning has produced a schedule for them. Monitoring the testing is as crucial as
the testing itself. It is important to know both “where we are” and “where we are going”. As
Watts Humphreys said “If you don’t know where you are – a map won’t help!” Monitoring is all
about the supply of timely and accurate information on which we can make informed
decisions. Having planned our testing, we need to compare what is actually happening and
take any necessary controlling actions.

Testing Process Session 1

Page 1-8 ATM130721 © Grove Consultants, 2013

Schedule and monitoring framework

In order for a Test Manager to provide efficient test control, a testing schedule and a
monitoring framework need to be established. Together these will enable tracking of test work
products and resources against the plan. The framework should include the detailed
measures and targets that are needed to relate the status of test work products and activities
to the plan and to the test objectives. The latter relationship (status of work products and
activities to the test objectives) is particularly important because one hundred per cent
progress in terms of test schedule means that all the planned tests are completed but does
not necessarily mean that the test object has been sufficiently tested, i.e. that the test
objectives have been met.

To provide an indication of test thoroughness, test coverage measures can be used. Different
measures are applicable at different test levels. For example, in component testing, code
coverage metrics are typically used. At system and acceptance testing levels, requirement or
feature coverage may be used.

For small and less complex projects, it may be relatively easy to relate test work products and
activities to the plan and test objectives, but for larger / more complex projects more detailed
objectives will need to be defined in order to achieve this.

Reporting progress

There are many ways in which we can report test progress using words, tables and/or graphs.
When using graphs and tables we may need to provide an interpretation of the results, since
people can jump to the wrong conclusions. A good graph is usually the best way to
communicate high-level information quickly (ideal for giving high level managers a feel for the
"big picture").

Most of the commercially available Test Management tools supply graphical monitoring as
part of the tool set. This not only helps with test monitoring but also encourages a consistent
approach throughout the organisation. These tools can also be used to give immediate
feedback when requested, e.g. reports at the touch of a button.

Another benefit of using graphical representation is the fact that we can predict what is likely
to happen by extrapolating the shape of the graph / curve. This helps when we need to make
decisions about the future of the testing and project.

Mapping to test basis

Metrics that we may gather include those related to risk, defects, tests, test coverage, and
effort. The choice of metrics is important because the wrong ones may mislead stakeholders
or convey no meaning to them at all. It is necessary to relate the status of test work products
and activities to the test basis in a manner that is understandable and relevant to the project
and business stakeholders.

Defining targets and measuring progress based on test conditions and groups of test
conditions can be used as a means to achieve this by relating other testing work products to
the test basis via the test conditions. Properly configured traceability, including the ability to
report on traceability status, makes the complex relationships that exist between development
work products, the test basis, and the test work products more transparent and
comprehensible.

Sometimes, the detailed measures and targets that stakeholders require to be monitored do
not relate directly to system functionality or a specification, especially if there is little or no
formal documentation. For example, a business stakeholder may be more interested in
establishing coverage against an operational business cycle even though the specification is
defined in terms of system functionality. For example, a project may be responsible for
delivering just one part of a system of systems in which any single stage of a business cycle
is supported by multiple systems, a business stakeholder may require coverage across
multiple systems to be reported so it maps to the business cycle with which the business
stakeholder is familiar.

Involvement of business stakeholders at an early stage in a project can help define these
measures and targets, which not only can be used to help provide better control during the

Session 1 Testing Process

© Grove Consultants, 2013 ATM130721 Page 1-9

project, but can also help to drive and influence the testing activities throughout the project.
For example, stakeholder measures and targets may result in the structuring of test design
and test implementation work products and/or test execution schedules to facilitate the
accurate monitoring of testing progress against these measures. These targets also help to
provide traceability for a specific test level and have the potential to help provide information
traceability across different test levels.

Test control

Test control is an on-going activity. It involves comparing actual progress against the plan, to
identify which activities are progressing in line with the plan and which ones are not. Any
deviations from the plan will need to be addressed. Typically, the sooner this is done the less
severe the corrective action needs to be. Deviations may be that progress is behind or ahead
of the planned schedule, that significantly more or less than the expected quantity of defects
have been found, or the early / late availability of some necessary resources.

Deviations from the plan are inevitable because, as we have said before, at the time of initial
planning we do not know (and cannot know) in detail what may happen, how long some
activities will take, what problems will be found, etc. Consequently the test plans are based on
many assumptions, several of which are likely to be proven inaccurate if not completely
wrong.

For example, we may discover that there are more defects in one part of the software than we
had planned for. As each defect will take some time to report, track and re-test and this effort
must be included in the schedule, we therefore have to estimate the number of defects that
will be found. If this estimate proves to be very different from the number actually found we
may need to allocate more resources (or fewer resources, if fewer defects than estimated are
found) to testing that part of the software.

The purpose of test control is to guide the testing to fulfil the mission, strategies, and
objectives. Control activities include reallocation of resources, re-prioritisation of activities and
tests, and even changing the scope of the testing. All of these will require changes to the test
plan. Exactly what controlling actions are taken will depend on what the test plan said and
what has actually happened.

We must look at the effects of taking controlling action – the before and after pictures. For
example, if we decided to allocate more time to the analysis and design of good quality test
cases, in doing this we may find that the time spent on test design goes up but the amount of
time in test execution and re-work goes down.

There are many different actions that we can take to control testing, but there is one area that
cannot be affected and that is the number of defects in the software – they are already there
by the time test execution starts. If testing finds more defects than expected, it is no use
blaming testing (but this is what sometimes happens).

Further details of test control activities are covered in Session 2.

1.3 Test Analysis

Learning Objectives

TM-1.3.1 K3 Use traceability to check completeness and consistency of defined test conditions
with respect to the test objectives, test strategy, and test plan.

TM-1.3.2 K2 Explain the factors that might affect the level of detail at which test conditions may
be specified and the advantages and disadvantages for specifying test conditions at
a detailed level.

From the ISTQB Glossary

exit criteria: The set of generic and specific conditions, agreed upon with the stakeholders for
permitting a process to be officially completed. The purpose of exit criteria is to prevent a task from
being considered completed when there are still outstanding parts of the task which have not been
finished. Exit criteria are used to report against and to plan when to stop testing. [After Gilb and Graham]

Testing Process Session 1

Page 1-10 ATM130721 © Grove Consultants, 2013

Rather than consider test analysis and design together as described in the Foundation Level
syllabus, the Advanced syllabi consider them as separate activities, albeit recognizing that
they can be implemented as parallel, integrated, or iterative activities to facilitate the
production of test design work products.

Test analysis is the name given to a set of activities that develop a set of test conditions from
available information. The test conditions can then be used to test the software described by
that information. This information is known as the test basis (it is the information on which the
tests are based). Test analysis applies to every level of testing, from component testing
through to acceptance testing.

During test planning, the scope of the testing project is defined. During test analysis, the Test
Analyst uses this scope definition to:

• analyse the test basis; and
• identify the test conditions.

Analysing the test basis

The first goal for the test analyst is to become very familiar with the test basis: understanding
all the information contained within it, and gaining a sense of what has not been specified (but
probably should have been!). This is something that cannot be achieved by reading through
the document once. Time should be taken to read the test basis at least two or three times,
and possibly more. The aim of this is to understand the document as well as the author does.
Being this thorough will almost certainly mean that the test analyst will find defects in the test
basis such as insufficient detail, contradictory information; and ambiguous statements. It is
good to find these defects where they exist – testing has begun!

Having gained a good understanding of the document it is then time to consider its testability.
For each requirement or function description we should ask “How can I test this?” and “What
are the risks associated with this?”. Sometimes it will be easy to see how a requirement can
be tested, but not always. Often requirements (and function descriptions) are vague or lack
details that are needed before any tests can be designed. For example, the use of the word
“etcetera” (or the more common abbreviated form: “etc.”) signifies missing detail. Other words
that do not belong in a specification include: “maybe”, “might”, “could”, “perhaps” or “should”.
These and many other words suggest requirements that are not testable.

The problem of missing detail and vague statements will also affect the development of the
system, but developers may, consciously or not, make assumptions about missing details or
the real meaning of vague statements. Their assumptions will not always be correct and
consequently the software they are producing will contain defects that the testing needs to
find. By highlighting such defects in the test basis it should be possible to obtain answers that
will give us a more correct understanding of the test basis and the ability to design good tests.

Assessing the risks associated with each requirement (or function description) is frequently an
important task. Ideally this would already have been done and the results of the analysis
(assignment of ranked risk levels to each requirement) incorporated into the test basis
document. However, it is more often the case that such risk analysis has not been performed.
Thus, it falls to the test analyst to undertake at least some basic risk analysis, the results of
which can be used to focus the test effort. The requirements that have the highest risk levels
should be given the most attention.

Another outcome from analysis of the test basis is the selection of test techniques. While the
use of certain techniques may already be mandated or recommended by the test strategy or
test plan (in the section on test approach), we should not miss the opportunity to identify
additional techniques that may be well suited to this type of development. Our choice of
techniques should also be influenced by the results of any risk analysis.

Before completing the analysis of the test basis we should consider priorities. Which parts of
the test basis are the most important? Which parts must we work on first and which parts can
be left until last? What proportions of our effort should be spent on each part? This may
already be clear if risk analysis has been carried out but, even if it has, we may still need to
prioritise amongst those items that have equal risk levels.

Session 1 Testing Process

© Grove Consultants, 2013 ATM130721 Page 1-11

Identifying test conditions

Test analysis is the activity that defines “what” is to be tested, in the form of test conditions.
Test conditions can be identified by analysis of the test basis, test objectives, and product
risks. In some situations, where documentation may be old or non-existent, the test conditions
may be identified by talking to relevant stakeholders (e.g., in workshops or during sprint
planning).

Test conditions can be viewed as the detailed measures and targets for success (e.g., as part
of the exit criteria) and should be traceable back to the test basis and defined strategic
objectives, including test objectives and other project or stakeholder criteria for success. Test
conditions should also be traceable forward to test designs and other test work products as
those work products are created.

Test analysis for a given level of testing can be performed as soon as the basis for testing is
established for that level. Formal test techniques (e.g. equivalence partitioning, boundary
value analysis, decision tables, etc.) and other general analytical techniques (e.g. analytical
risk-based strategies and analytical requirements-based strategies) can be used to identify
test conditions. The level of detail at which test conditions are specified can vary. Test
conditions may state specific values (detailed test conditions) or may merely identify the
variables (high level test conditions) depending on several factors such as the level of testing,
the information available at the time of carrying out the analysis and the chosen level of detail
(i.e., the degree of granularity of the documentation).

Factors affecting level of detail

There are a number of factors to consider when deciding on the level of detail at which to
specify test conditions, including:

• Level of testing

At the component testing level, test conditions are more likely to be focused at a
detailed level whereas, at higher levels of testing, they are more likely to be specified
at a more abstract (higher) level.

• Level of detail and quality of the test basis

The more detailed the test basis the more detailed the test conditions can be, and
vice versa.

• System / software complexity

The greater the complexity of the system / software, the greater the need for more
detailed test conditions. Greater complexity typically requires more thorough testing
and this can be achieved by identifying and testing more, and more detailed, test
conditions.

• Project and product risk

High risk items require more thorough testing so we would expect to see more
detailed test conditions.

• The relationship between the test basis, what is to be tested and how it is to be tested

The approach to testing (the ‘how’) has a particular impact on the level of test
conditions. Scripted testing is typically served well by many detailed test conditions,
whereas unscripted approaches to testing that use the testers’ intuition are usually
well served by fewer high level test conditions.

• Software development lifecycle in use

Incremental and iterative lifecycles are more likely to identify test conditions at a high
level whereas sequential lifecycles (particularly for large projects) are more likely to
use detailed test conditions.

• Test management tool being used

Testing Process Session 1

Page 1-12 ATM130721 © Grove Consultants, 2013

Different test management tools support different test processes, some encouraging
more detailed test conditions than others.

• Level at which test design and other test work products are to be specified and
documented

If the test work products are specified at a detailed level it is likely that test conditions
should be consistent with this.

• Skills and knowledge of the test analysts

Specifying detailed test conditions is one way for the test analysts to pass on their
skills and knowledge to others who may have to execute the tests. If the test analysts
with the skills and knowledge will be the people executing the tests then it may not be
necessary for them to specify test conditions at such a detailed level.

• The level of maturity of the test process and the organization itself

A higher level of maturity may require a greater level of detail in the test conditions,
when for example safety-critical software is subjected to a rigorous testing process;
or, it may allow a lesser level of detail when availability of skilled and experienced
staff allows good enough testing to be accomplished without so much formality.

• Availability of other project stakeholders for consultation

If it will be difficult to consult project stakeholders during testing, it may be of greater
benefit to identify test conditions at a more detailed level. If however, project
stakeholders can be consulted easily throughout the project then test conditions need
not be specified in so much detail.

Detailed (low level) test conditions

Specifying test conditions in a detailed fashion will tend to result in a larger number of test
conditions. For example, you might have a single general test condition, “Test checkout,” for
an e-commerce application. However, this might be split into multiple detailed test conditions,
with one or several test conditions for each supported payment method, with perhaps
additional conditions for each possible destination country, and so on.

Advantages of specifying test conditions at a detailed level include:

• Facilitates more flexibility in relating other test work products (e.g., test cases) to the
test basis and test objectives, thus providing better and more detailed monitoring
and control for a Test Manager.

• Contributes to defect prevention, as discussed at Foundation Level, by occurring
early in a project for higher levels of testing, as soon as the test basis is established
and potentially before system architecture and detailed design are available.

• Better relates testing work products to stakeholders (i.e. in terms that they can
understand). Often, test cases and other testing work products mean nothing to
business stakeholders and simple metrics such as the number of test cases executed
mean nothing to the coverage requirements of stakeholders.

• Helps to influence and direct not just other testing activities, but also other
development activities if done early enough.

• Enables test design, implementation and execution, together with the resulting work
products, to be optimized by more efficient coverage of detailed measures and
targets.

• Provides the basis for clearer horizontal traceability within a test level (i.e., to the
related artefacts at that level).

Disadvantages of specifying test conditions at a detailed level include:

• Potentially time-consuming.

More effort will be required to identify and document a larger number of test
conditions. Also, as the test conditions are more detailed, they will be more specific.
Determining the precise values to be used in detailed test conditions will take more
effort to specify than it takes to document high level test conditions.

Session 1 Testing Process

© Grove Consultants, 2013 ATM130721 Page 1-13

• Maintenance can become difficult in a changing environment.

Clearly the more test conditions that are identified and documented, the more
updates may be needed when the software changes. It will not necessarily be more
difficult, but will require more effort to keep the test conditions up to date.

• Level of formality needs to be defined and implemented across the team.

Achieving consistency of detail is important. Ensuring all the team members
understand the depth of detail that is required may take some time, effort and
practice.

Specification of detailed test conditions can be particularly effective in the following situations:

• Lightweight test design documentation methods, such as checklists, are being used
to accommodate an incremental or iterative development lifecycle, cost and / or time
constraints or other factors.

Although detailed test conditions may seem to be a contradiction to an otherwise
‘lightweight’ approach, the idea here is that the detailed test conditions serve as the
primary test documentation for what is effectively unscripted test execution (i.e. no
test case documentation is generated).

• Few or no formal requirements or other development work products are available as
the test basis.

In these situations the detailed test conditions become the main test documentation
driving the testing.

• The project is large-scale, complex or high risk and requires a level of monitoring and
control that cannot be delivered by simply relating test cases to development work
products.

Greater formality and attention to detail (being more thorough) is better served with
detailed test conditions.

High level (less detailed) test conditions

Test conditions may be specified with less detail when the test basis can be related easily and
directly to test design work products. This is more likely to be the case for the following:

• Component level testing.
• Less complex projects where simple hierarchical relationships exist between what is

to be tested and how it is to be tested.
• Acceptance testing, where use cases can be used to help define tests.

1.4 Test Design

Learning Objective

TM-1.4.1 K3 Use traceability to check completeness and consistency of designed test cases with
respect to the defined test conditions.

Test design is the activity that defines “how” something is to be tested. It involves the
identification of test cases by the stepwise elaboration of the test conditions that were
identified during analysis (or of the test basis, if test analysis was not performed earlier),
possibly using test techniques identified in the test strategy and/or the test plan.

Relating test cases to test basis and test objectives

Depending on the approaches being used for test monitoring, test control and traceability, test
cases may be directly related (or indirectly related via the test conditions) to the test basis and
defined objectives. These objectives include strategic objectives, test objectives and other
project or stakeholder criteria for success.

Testing Process Session 1

Page 1-14 ATM130721 © Grove Consultants, 2013

Separate versus integrated activity

Test design for a given test level can be performed once test conditions are identified and
enough information is available to enable the production of either low or high-level test cases,
according to the employed approach to test design. For higher levels of testing, it is more
likely that test design is a separate activity following earlier test analysis. For lower levels of
testing, it is likely that test analysis and design will be conducted as an integrated activity.

Early implementation activities

It is also likely that some tasks that normally occur during test implementation will be included
in the test design process when using an iterative approach to building the tests required for
execution; e.g., the creation of test data. In fact, this approach can optimize the coverage
obtained by the test conditions, either creating low-level or high-level test cases in the
process.

Concrete and logical test cases

One of the jobs of the Test Analyst is to determine the best types of test case for a given
situation. Concrete test cases provide all the specific information and instructions needed for
the tester to execute the test (including any data requirements) and verify the results.
Concrete test cases are useful when:

• the requirements are well-defined,
• the testing staff are less experienced, and
• when external verification of the tests, such as audits, is required.

Concrete test cases provide excellent reproducibility (i.e., another tester will get the same
results), but may also require a significant amount of maintenance effort. Concrete test cases
tend to limit tester ingenuity and, therefore, test coverage during execution.

Logical test cases provide guidelines for what should be tested, but allow the Test Analyst to
vary the actual data or even the procedure that is followed when executing the test. Logical
test cases may provide better coverage than concrete test cases because they will vary
slightly each time they are executed. This, however, also leads to a loss in reproducibility.
Logical test cases are best used when:

• the requirements are not well-defined,
• the Test Analyst who will be executing the test is experienced with both testing and

the product, and
• when formal documentation is not required (e.g., no audits will be conducted).

Logical test cases may be defined early in the requirements process, when the requirements
are not yet well-defined. These test cases may be used to develop concrete test cases when
the requirements become more defined and stable. In this case, the test case creation is done
sequentially, flowing from logical to concrete with only the concrete test cases used for
execution.

1.5 Test Implementation

Learning Objective

TM-1.5.1 K3 Use risks, prioritization, test environment and data dependencies, and constraints to
develop a test execution schedule which is complete and consistent with respect to
the test objectives, test strategy, and test plan.

From the ISTQB Glossary

test execution: The process of running a test on the component or system under test, producing actual
result(s).

test procedure: See test procedure specification.

Session 1 Testing Process

© Grove Consultants, 2013 ATM130721 Page 1-15

test procedure specification: A document specifying a sequence of actions for the execution of a test.
Also known as test script or manual test script. [After IEEE 829] See also test specification.

test script: Commonly used to refer to a test procedure specification, especially an automated one.

Scope

Test implementation is the activity in which tests are made ready to be executed. An
important part of this is that they should be organized and prioritized by the Test Analysts. In
formally-documented contexts, test implementation is the activity in which test designs are
implemented as concrete test cases, test procedures, and test data. Some organizations
following the IEEE 829 [IEEE829] standard define inputs and their associated expected
results in test case specifications, and test steps in test procedure specifications. More
commonly, each test’s inputs, expected results, and test steps are documented together. Test
implementation also includes the creation of stored test data (e.g., in flat files or database
tables).

Note that some implementation tasks may be undertaken early and integrated with the test
design activity as described under “Early implementation activities” in section 1.4 “Test
Design”.

The main challenge when designing and organizing test procedures is deciding in what order
to test things. More specifically, in developing test procedures we are putting sets of test
cases into groups that define their execution order. Each test procedure will comprise a
sequence of test cases in which the post conditions of one test case form the pre-conditions
of the next. Each test procedure is a logical unit of test execution work that will typically be
executed from start to finish in one go (if the software doesn’t fail).

To create the necessary preconditions for a given test case, we may need to run one or more
other test cases that have already been incorporated into an earlier test procedure. This
duplication should be avoided if possible (though it will not always be possible to do so).

Test implementation also involves final checks to ensure that the test team is ready for test
execution to take place. Checks could include ensuring delivery of the required test
environment, test data and code (possibly running some test environment and/or code
acceptance tests as a "smoke test") and that all test cases have been written, reviewed and
are ready to be run. It may also include checking against explicit and implicit entry criteria for
the test level in question (see Section 1.7). Test implementation can also involve developing a
detailed description of the test environment and test data.

Level of detail

The level of detail and associated complexity of work done during test implementation will be
influenced by the detail of other test work products (e.g., test cases and test conditions). In
some cases, particularly where tests are to be archived for long-term re-use in regression
testing, tests may provide detailed descriptions of the steps necessary to execute a test, so
as to ensure reliable, consistent execution regardless of who runs the test. If regulatory rules
apply, tests should provide evidence of compliance to applicable standards (see section 2.9).

Test execution schedule

In addition to the test procedures, we may also be required to prepare a test execution
schedule that defines the order in which the test procedures (both manual and automated
tests) are to be executed. This should also include when they are to be performed and by
whom. It will need to consider the logical dependencies between the test procedures (some
may have to be executed before others, when one set of test procedures tests software that
depends on the data created by another set). The test execution schedule should also allow
for regression testing to be performed on each delivery of software. This may mean that some
test procedures will be repeated many times.

Test Managers should carefully check for constraints, including risks and priorities that might
require tests to be run in a particular order or on particular equipment. Dependencies on the
test environment or test data must be known and checked.

Testing Process Session 1

Page 1-16 ATM130721 © Grove Consultants, 2013

Early test implementation

There may be some disadvantages to early test implementation. With an Agile lifecycle, for
example, the code may change dramatically from one iteration to the next, rendering much of
the earlier implementation work obsolete. Even without a lifecycle as change-prone as Agile,
any iterative or incremental lifecycle may result in significant changes between iterations,
making scripted tests unreliable or subject to high maintenance. The same is true for poorly-
managed sequential lifecycles, where the requirements can change frequently even late into
the project. Before embarking on an extensive test implementation effort, it is wise to
understand the software development lifecycle and the predictability of the software features
that will be available for testing.

There may be some advantages in early test implementation. For example, concrete tests
provide worked examples of how the software should behave, if written in accordance with
the test basis. Business domain experts are likely to find verification of concrete tests easier
than verification of abstract business rules, and may thereby identify further weaknesses in
software specifications. Such verified tests may provide illuminating illustrations of required
behaviour for software designers and developers.

1.6 Test Execution

Learning Objective

TM-1.6.1 K3 Use traceability to monitor test progress for completeness and consistency with the
test objectives, test strategy, and test plan.

From the ISTQB Glossary

test log: A chronological record of relevant details about the execution of tests. [IEEE 829]

Entry criteria

Clearly test execution cannot begin until the test object has been delivered. However, test
execution should not be started until all the entry criteria to test execution are satisfied (or
waived). Although the entry criteria will vary from project to project, common criteria include:

• tests have been designed or at least defined

Depending on the approach to test execution, for example, the extent to which the
testing will be scripted / unscripted.

• necessary tools are in place

Arguably the most necessary tools are test management, defect tracking and (if
applicable) test execution automation.

• test results tracking, including metrics tracking, should be working

Also the tracked data should be understood by all team members.

• Standards for test logging and defect reporting should be available and published.

Again, all team members should be familiar with and understand these.

By ensuring that these items are in place prior to test execution, the execution can proceed
efficiently.

Scripted and unscripted testing

Tests should be executed according to the designed / defined test cases. Having put the
effort in to identify and (probably) design tests, it is important to ensure that they are executed
correctly. However, the Test Manager should consider allowing some additional time in the
schedule so that the testers can cover additional interesting test scenarios and behaviours
that are observed during testing. This integration of scripted and unscripted testing techniques

Session 1 Testing Process

© Grove Consultants, 2013 ATM130721 Page 1-17

helps to guard against defect escapes due to gaps in scripted coverage, and to circumvent
the pesticide paradox.

When following a test strategy that is at least in part reactive, time should be reserved for test
sessions using experience-based and defect-based techniques. Of course, any failure
detected during such unscripted testing must describe the variations from the written test
case that are necessary to reproduce the failure.

Properly automated tests, of course, will follow their defined instructions without deviation.

Test Manager responsibilities

The main role of a Test Manager during test execution is to monitor progress according to the
test plan and, if required, to initiate and carry out control actions to guide testing toward a
successful conclusion in terms of mission, objectives, and strategy. To do so, the Test
Manager can use traceability from the test results back to the test cases / procedures, the test
conditions, the test basis, and ultimately the test objectives, and also from the test objectives
forward to the test results. This process is described in detail in Section 2.6.

1.7 Evaluating Exit Criteria and Reporting

Learning Objective

TM-1.7.1 K2 Explain the importance of accurate and timely information collection during the test
process to support accurate reporting and evaluation against exit criteria.

Documentation of, and reporting for, test progress monitoring and control are discussed in
detail in Section 2.6.

Effective evaluation and reporting

This covers two of the Test Manager's key responsibilities: regular reporting of the status and
progress of testing, and final reporting of the results obtained. It is important to ensure that
effective processes are in place to provide the information necessary for this. Whilst Test
Analysts and Technical Test Analysts are responsible for gathering accurate and timely
information, it is the Test Manager’s responsibility to ensure that appropriate processes and
mechanisms are in place to allow the testers to fulfil these responsibilities.

Definition of the information requirements and methods for collection are part of test planning,
monitoring and control. During test analysis, test design, test implementation and test
execution, the Test Manager should ensure that members of the test team responsible for
these activities are providing the information required in an accurate and timely manner so as
to facilitate effective evaluation and reporting.

Detail and frequency

The frequency and level of detail required for reporting are dependent on the project and the
organization. This should be negotiated during the test planning phase and should include
consultation with relevant project stakeholders.

1.8 Test Closure Activities

Learning Objectives

TM-1.8.1 K2 Summarize the four groups of test closure activities.

TM-1.8.2 K3 Implement a project retrospective to evaluate processes and discover areas to
improve.

Testing Process Session 1

Page 1-18 ATM130721 © Grove Consultants, 2013

From the ISTQB Glossary

test closure: During the test closure phase of a test process data is collected from completed activities
to consolidate experience, testware, facts and numbers. The test closure phase consists of finalizing
and archiving the testware and evaluating the test process, including preparation of a test evaluation
report. See also test process.

Once test execution is determined to be complete, the key outputs should be captured and
either passed to the relevant person or archived. Collectively, these are test closure activities.
Test closure activities fall into four main groups:

1. Test completion check - ensuring that all test work is indeed concluded. For
example, all planned tests should be either run or deliberately skipped, and all known
defects should be either fixed and confirmation tested, deferred for a future release,
or accepted as permanent restrictions.

2. Test artefacts handover - delivering valuable work products to those who need
them. For example, known defects deferred or accepted should be communicated to
those who will use and support the system. Tests and test environments should be
given to those responsible for maintenance testing. Regression test sets (either
automated or manual) should be documented and delivered to the maintenance
team.

3. Lessons learned - performing or participating in retrospective meetings where
important lessons (both from within the test project and across the whole software
development lifecycle) can be documented. In these meetings, plans are established
to ensure that good practices can be repeated and poor practices are either not
repeated or, where issues cannot be resolved, they are accommodated within project
plans. Areas to be considered include the following:

- Was the user representation in the quality risk analysis sessions a broad enough

cross-section? For example, due to late discovery of unanticipated defect
clusters, the team may decide that a broader cross-section of user
representatives should participate in quality risk analysis sessions on future
projects.

- Were the estimates accurate? For example, estimates may have been

significantly misjudged and therefore future estimation activities will need to
account for this together with the underlying reasons, e.g., was testing inefficient
or was the estimate actually lower than it should have been.

- What are the trends and the results of cause and effect analysis of the defects?

For example, assess if late change requests affected the quality of the analysis
and development, look for trends that indicate bad practices, e.g., skipping a test
level which would have found defects earlier and in a more cost effective
manner, for perceived savings of time. Check if defect trends could be related to
areas such as new technologies, staffing changes, or the lack of skills.

- Are there potential process improvement opportunities? If yes, what are they

and how might they be implemented?

- Were there any unanticipated variances from the plan that should be
accommodated in future planning? Let’s anticipate them next time!

4. Archiving results, logs, reports, and other documents and work products in the
configuration management system. For example, the test plan and project plan
should both be stored in a planning archive, with clear links to the system and version
they were used on.

It is common for one or more of these tasks to be omitted, usually due to premature
reassignment or dismissal of project team members, resource or schedule pressures on
subsequent projects, or team burnout. They are, however, important and should be explicitly
included as part of the test plan; then, it will be easier for the Test Manager to resist any
pressure to overlook them. On projects carried out under contract, such as custom

Session 1 Testing Process

© Grove Consultants, 2013 ATM130721 Page 1-19

development, the contract should specify the tasks required so that there is a clear obligation
to perform them.

Metrics to monitor test closure activities may include:

• Percentage of test cases run during test execution (coverage),
• Percentage of test cases checked into a re-usable test case repository,
• Ratio of test cases automated : to be automated,
• Percentage of test cases identified as regression tests,
• Percentage breakdown of outstanding defect reports closed (e.g. deferred, no further

action, change request, etc.),
• Percentage of work products identified and archived.

